bims-mricoa Biomed News
on MRI contrast agents
Issue of 2021‒12‒26
seven papers selected by
Merve Yavuz
Bilkent University


  1. Nanomaterials (Basel). 2021 Dec 17. pii: 3432. [Epub ahead of print]11(12):
      Magnetic nanoparticles (MNPs) have been studied for diagnostic purposes for decades. Their high surface-to-volume ratio, dispersibility, ability to interact with various molecules and superparamagnetic properties are at the core of what makes MNPs so promising. They have been applied in a multitude of areas in medicine, particularly Magnetic Resonance Imaging (MRI). Iron oxide nanoparticles (IONPs) are the most well-accepted based on their excellent superparamagnetic properties and low toxicity. Nevertheless, IONPs are facing many challenges that make their entry into the market difficult. To overcome these challenges, research has focused on developing MNPs with better safety profiles and enhanced magnetic properties. One particularly important strategy includes doping MNPs (particularly IONPs) with other metallic elements, such as cobalt (Co) and manganese (Mn), to reduce the iron (Fe) content released into the body resulting in the creation of multimodal nanoparticles with unique properties. Another approach includes the development of MNPs using other metals besides Fe, that possess great magnetic or other imaging properties. The future of this field seems to be the production of MNPs which can be used as multipurpose platforms that can combine different uses of MRI or different imaging techniques to design more effective and complete diagnostic tests.
    Keywords:  iron oxide nanoparticles; magnetic nanoparticles; magnetic resonance imaging; magnetic separation; multimodal imaging
    DOI:  https://doi.org/10.3390/nano11123432
  2. Nanomaterials (Basel). 2021 Nov 25. pii: 3189. [Epub ahead of print]11(12):
      Many magnetotactic bacteria (MTB) biomineralize magnetite crystals that nucleate and grow inside intracellular membranous vesicles originating from invaginations of the cytoplasmic membrane. The crystals together with their surrounding membranes are referred to as magnetosomes. Magnetosome magnetite crystals nucleate and grow using iron transported inside the vesicle by specific proteins. Here, we tackle the question of the organization of magnetosomes, which are always described as constituted by linear chains of nanocrystals. In addition, it is commonly accepted that the iron oxide nanocrystals are in the magnetite-based phase. We show, in the case of a wild species of coccus-type bacterium, that there is a double organization of the magnetosomes, relatively perpendicular to each other, and that the nanocrystals are in fact maghemite. These findings were obtained, respectively, by using electron tomography of whole mounts of cells directly from the environment and high-resolution transmission electron microscopy and diffraction. Structure simulations were performed with the MacTempas software. This study opens new perspectives on the diversity of phenotypes within MTBs and allows to envisage other mechanisms of nucleation and formation of biogenic iron oxide crystals.
    Keywords:  EDS; electron microscopy; electron tomography; high-resolution imaging; maghemite; magnetite; magnetotactic bacteria; phenotype
    DOI:  https://doi.org/10.3390/nano11123189
  3. Small Methods. 2021 Nov;5(11): e2100796
      Magnetic nanoparticles have many advantages in medicine such as their use in non-invasive imaging as a Magnetic Particle Imaging (MPI) tracer or Magnetic Resonance Imaging contrast agent, the ability to be externally shifted or actuated and externally excited to generate heat or release drugs for therapy. Existing nanoparticles have a gentle sigmoidal magnetization response that limits resolution and sensitivity. Here it is shown that superferromagnetic iron oxide nanoparticle chains (SFMIOs) achieve an ideal step-like magnetization response to improve both image resolution & SNR by more than tenfold over conventional MPI. The underlying mechanism relies on dynamic magnetization with square-like hysteresis loops in response to 20 kHz, 15 kAm-1 MPI excitation, with nanoparticles assembling into a chain under an applied magnetic field. Experimental data shows a "1D avalanche" dipole reversal of every nanoparticle in the chain when the applied field overcomes the dynamic coercive threshold of dipole-dipole fields from adjacent nanoparticles in the chain. Intense inductive signal is produced from this event resulting in a sharp signal peak. Novel MPI imaging strategies are demonstrated to harness this behavior towards order-of-magnitude medical image improvements. SFMIOs can provide a breakthrough in noninvasive imaging of cancer, pulmonary embolism, gastrointestinal bleeds, stroke, and inflammation imaging.
    Keywords:  magnetic nanoparticles; magnetic particle imaging; superferromagnetism
    DOI:  https://doi.org/10.1002/smtd.202100796
  4. Int J Nanomedicine. 2021 ;16 8159-8184
      Conventional therapies for cancer eradication like surgery, radiotherapy, and chemotherapy, even though most widely used, still suffer from some disappointing outcomes. The limitations of these therapies during cancer recurrence and metastasis demonstrate the need for better alternatives. Some bacteria preferentially colonize and proliferate inside tumor mass; thus these bacteria can be used as ideal candidates to deliver antitumor therapeutic agents. The bacteria like Bacillus spp., Clostridium spp., E. coli, Listeria spp., and Salmonella spp. can be reprogrammed to produce, transport, and deliver anticancer agents, eg, cytotoxic agents, prodrug converting enzymes, immunomodulators, tumor stroma targeting agents, siRNA, and drug-loaded nanoformulations based on clinical requirements. In addition, these bacteria can be genetically modified to express various functional proteins and targeting ligands that can enhance the targeting approach and controlled drug-delivery. Low tumor-targeting and weak penetration power deep inside the tumor mass limits the use of anticancer drug-nanoformulations. By using anticancer drug nanoformulations and other therapeutic payloads in combination with antitumor bacteria, it makes a synergistic effect against cancer by overcoming the individual limitations. The tumor-targeting bacteria can be either used as a monotherapy or in addition with other anticancer therapies like photothermal therapy, photodynamic therapy, and magnetic field therapy to accomplish better clinical outcomes. The toxicity issues on normal tissues is the main concern regarding the use of engineered antitumor bacteria, which requires deeper research. In this article, the mechanism by which bacteria sense tumor microenvironment, role of some anticancer agents, and the recent advancement of engineering bacteria with different therapeutic payloads to combat cancers has been reviewed. In addition, future prospective and some clinical trials are also discussed.
    Keywords:  anticancer payload; cancer; genetic modifications; nanoparticle; targeted drug-delivery; tumor-targeting bacteria
    DOI:  https://doi.org/10.2147/IJN.S338272
  5. Prog Biomed Eng (Bristol). 2022 Jan;pii: 012003. [Epub ahead of print]4(1):
      Proteins are some of the most versatile and studied macromolecules with extensive biomedical applications. The natural and biological origin of proteins offer such materials several advantages over their synthetic counterparts, such as innate bioactivity, recognition by cells and reduced immunogenic potential. Furthermore, proteins can be easily functionalized by altering their primary amino acid sequence and can often be further self-assembled into higher order structures either spontaneously or under specific environmental conditions. This review will feature the recent advances in protein-based biomaterials in the delivery of therapeutic cargo such as small molecules, genetic material, proteins, and cells. First, we will discuss the ways in which secondary structural motifs, the building blocks of more complex proteins, have unique properties that enable them to be useful for therapeutic delivery. Next, supramolecular assemblies, such as fibers, nanoparticles, and hydrogels, made from these building blocks that are engineered to behave in a cohesive manner, are discussed. Finally, we will cover additional modifications to protein materials that impart environmental responsiveness to materials. This includes the emerging field of protein molecular robots, and relatedly, protein-based theranostic materials that combine therapeutic potential with modern imaging modalities, including near-infrared fluorescence spectroscopy (NIRF), single-photo emission computed tomography/computed tomography (SPECT/CT), positron emission tomography (PET), magnetic resonance imaging (MRI), and ultrasound/photoacoustic imaging (US/PAI).
    Keywords:  Biomaterials; drug delivery; protein; self-assembly
    DOI:  https://doi.org/10.1088/2516-1091/ac2841
  6. Int J Nanomedicine. 2021 ;16 8069-8086
      Bacteria and their derivatives (membrane vesicles, MVs) exhibit great advantages for targeting hypoxic tumor cores, strong penetration ability and activating immune responses, holding great potential as auspicious candidates for therapeutic and drug-delivery applications. However, the safety issues and low therapeutic efficiency by single administration still need to be solved. To further optimize their performance and to utilize their natural abilities, scientists have strived to modify bacteria with new moieties on their surface while preserving their advantages. The aim of this review is to give a comprehensive overview of a non-genetic engineering modification strategy that can be used to optimize the bacteria with nanomaterials and the design strategy that can be used to optimize MVs for better targeted therapy. Here, the advantages and disadvantages of these processes and their applicability for the development of bacteria-related delivery system as antitumor therapeutic agents are discussed. The prospect and the challenges of the above targeted delivery system are also proposed.
    Keywords:  bacteria; immune response; membrane vesicles; nanomaterial; targeted delivery
    DOI:  https://doi.org/10.2147/IJN.S329855
  7. Biotechnol Adv. 2021 Dec 15. pii: S0734-9750(21)00193-2. [Epub ahead of print] 107887
      Living organisms such as bacteria are often exposed to continuous changes in the nutrient availability in nature. Therefore, bacteria must constantly monitor the environmental condition, and adjust the metabolism quickly adapting to the change in the growth condition. For this, bacteria must orchestrate (coordinate and integrate) the complex and dynamically changing information on the environmental condition. In particular, the central carbon metabolism (CCM), monomer synthesis, and macromolecular synthesis must be coordinately regulated for the efficient growth. It is a grand challenge in bioscience, biotechnology, and synthetic biology to understand how living organisms coordinate the metabolic regulation systems. Here, we consider the integrated sensing of carbon sources by the phosphotransferase system (PTS), and the feed-forward/feedback regulation systems incorporated in the CCM in relation to the pool sizes of flux-sensing metabolites and αketoacids. We also consider the metabolic regulation of amino acid biosynthesis (as well as purine and pyrimidine biosyntheses) paying attention to the feedback control systems consisting of (fast) enzyme level regulation with (slow) transcriptional regulation. The metabolic engineering for the efficient amino acid production by bacteria such as Escherichia coli and Corynebacterium glutamicum is also discussed (in relation to the regulation mechanisms). The amino acid synthesis is important for determining the rate of ribosome biosynthesis. Thus, the growth rate control (growth law) is further discussed on the relationship between (p)ppGpp level and the ribosomal protein synthesis.
    Keywords:  Amino acid synthesis; Feed-forward regulation; Feedback regulation; Flux sensing; Growth rate control; Metabolic engineering; Metabolic regulation; Purine and pyrimidine syntheses; Robustness; αketoacid
    DOI:  https://doi.org/10.1016/j.biotechadv.2021.107887