bims-mricoa Biomed News
on MRI contrast agents
Issue of 2021‒10‒24
five papers selected by
Merve Yavuz
Bilkent University


  1. Bioengineering (Basel). 2021 Sep 30. pii: 134. [Epub ahead of print]8(10):
      Magnetic iron oxide nanoparticles (MNPs) have been developed and applied for a broad range of biomedical applications, such as diagnostic imaging, magnetic fluid hyperthermia, targeted drug delivery, gene therapy and tissue repair. As one key element, reproducible synthesis routes of MNPs are capable of controlling and adjusting structure, size, shape and magnetic properties are mandatory. In this review, we discuss advanced methods for engineering and utilizing MNPs, such as continuous synthesis approaches using microtechnologies and the biosynthesis of magnetosomes, biotechnological synthesized iron oxide nanoparticles from bacteria. We compare the technologies and resulting MNPs with conventional synthetic routes. Prominent biomedical applications of the MNPs such as diagnostic imaging, magnetic fluid hyperthermia, targeted drug delivery and magnetic actuation in micro/nanorobots will be presented.
    Keywords:  drug delivery; magnetic actuation; magnetic fluid hyperthermia; magnetic nanoparticle synthesis; magnetic particle imaging; magnetic resonance imaging; magnetosomes; micro/nanorobotics; microfluidic systems; microreactor
    DOI:  https://doi.org/10.3390/bioengineering8100134
  2. Biomed Pharmacother. 2021 Oct 15. pii: S0753-3322(21)01105-7. [Epub ahead of print]144 112321
      Cancer is one of the major challenges fronting the biomedical basic researches in our time. The study and development of effective therapeutic strategies for cancer therapy are vital. Among the many probable core constituents of nanoparticles, magnetite-based nanoparticles have been widely studied for cancer therapy owing to their inherent magnetic features, multifunctional design, biodegradable and biocompatible properties. Magnetic nanoparticles have been also designed for utilizing as contrast enhancer agents for magnetic resonance imaging, drug delivery systems, and most recently as a therapeutic element in inducing cellular death in tumor ablation therapies. This review aimed to provide an overview of the various applications of magnetic nanoparticles and recent achievements in developing these advanced materials for cancer therapy.
    Keywords:  Advanced materials; Cancer; Magnetic nanoparticles; Therapeutic strategies
    DOI:  https://doi.org/10.1016/j.biopha.2021.112321
  3. Chem Soc Rev. 2021 Oct 18. 50(20): 11614-11667
      Magnetic hyperthermia (MHT) is a therapeutic modality for the treatment of solid tumors that has now accumulated more than 30 years of experience. In the ongoing MHT clinical trials for the treatment of brain and prostate tumors, iron oxide nanoparticles are employed as intra-tumoral MHT agents under a patient-safe 100 kHz alternating magnetic field (AMF) applicator. Although iron oxide nanoparticles are currently approved by FDA for imaging purposes and for the treatment of anemia, magnetic nanoparticles (MNPs) designed for the efficient treatment of MHT must respond to specific physical-chemical properties in terms of magneto-energy conversion, heat dose production, surface chemistry and aggregation state. Accordingly, in the past few decades, these requirements have boosted the development of a new generation of MNPs specifically aimed for MHT. In this review, we present an overview on MNPs and their assemblies produced via different synthetic routes, focusing on which MNP features have allowed unprecedented heating efficiency levels to be achieved in MHT and highlighting nanoplatforms that prevent magnetic heat loss in the intracellular environment. Moreover, we review the advances on MNP-based nanoplatforms that embrace the concept of multimodal therapy, which aims to combine MHT with chemotherapy, radiotherapy, immunotherapy, photodynamic or phototherapy. Next, for a better control of the therapeutic temperature at the tumor, we focus on the studies that have optimized MNPs to maintain gold-standard MHT performance and are also tackling MNP imaging with the aim to quantitatively assess the amount of nanoparticles accumulated at the tumor site and regulate the MHT field conditions. To conclude, future perspectives with guidance on how to advance MHT therapy will be provided.
    DOI:  https://doi.org/10.1039/d1cs00427a
  4. Adv Healthc Mater. 2021 Oct 20. e2100625
      Cells adapt and move due to chemical, physical, and mechanical cues from their microenvironment. It is therefore important to create materials that mimic human tissue physiology by surface chemistry, architecture, and dimensionality to control cells in biomedical settings. The impact of the environmental architecture is particularly relevant in the context of cancer cell metastasis, where cells migrate through small constrictions in their microenvironment to invade surrounding tissues. Here, a synthetic hydrogel scaffold with an interconnected, random, 3D microchannel network is presented that is functionalized with collagen to promote cell adhesion. It is shown that cancer cells can invade such scaffolds within days, and both the microarchitecture and stiffness of the hydrogel modulate cell invasion and nuclear dynamics of the cells. Specifically, it is found that cell migration through the microchannels is a function of hydrogel stiffness. In addition to this, it is shown that the hydrogel stiffness and confinement, influence the occurrence of nuclear envelope ruptures of cells. The tunable hydrogel microarchitecture and stiffness thus provide a novel tool to investigate cancer cell invasion as a function of the 3D microenvironment. Furthermore, the material provides a promising strategy to control cell positioning, migration, and cellular function in biological applications, such as tissue engineering.
    Keywords:  3D architecture; cell migration; confined microarchitecture; hydrogels; nuclear envelopes
    DOI:  https://doi.org/10.1002/adhm.202100625
  5. Pharmaceutics. 2021 Oct 05. pii: 1621. [Epub ahead of print]13(10):
      In the last decade, the interest in ferritin-based vaccines has been increasing due to their safety and immunogenicity. Candidates against a wide range of pathogens are now on Phase I clinical trials namely for influenza, Epstein-Barr, and SARS-CoV-2 viruses. Manufacturing challenges related to particle heterogeneity, improper folding of fused antigens, and antigen interference with intersubunit interactions still need to be overcome. In addition, protocols need to be standardized so that the production bioprocess becomes reproducible, allowing ferritin-based therapeutics to become readily available. In this review, the building blocks that enable the formulation of ferritin-based vaccines at an experimental stage, including design, production, and purification are presented. Novel bioengineering strategies of functionalizing ferritin nanoparticles based on modular assembly, allowing the challenges associated with genetic fusion to be circumvented, are discussed. Distinct up/down-stream approaches to produce ferritin-based vaccines and their impact on production yield and vaccine efficacy are compared. Finally, ferritin nanoparticles currently used in vaccine development and clinical trials are summarized.
    Keywords:  ferritin nanoparticles; genetic fusion; modular assembly; recombinant expression; surface decoration; vaccines
    DOI:  https://doi.org/10.3390/pharmaceutics13101621