Curr Top Med Chem. 2021 Jul 01.
Nanotechnology has shown promising advancements in the field of drug development and its delivery. In particular, the applications of nanoparticles for treatment and diagnostics of cancer reached such a precision that it can detect a single cancer cell and can target it to deliver a payload for the treatment of that cancerous cell. Conventional cancer therapy methods have side effects, and diagnostics techniques are time-consuming and expensive. Nanoparticles (NPs) such as polymeric nanoparticles (nanogels, nanofibers, liposomes), metallic nanoparticles such as gold NP (GNPs), sliver NP (AgNP), calcium nanoparticles (CaNPs), carbon nanotubes (CNTs), graphene, and quantum dots (QDs) have revolutionized cancer diagnostics and treatments due to their high surface charge, size and morphology. Functionalization of these nanoparticles with different biological molecules, such as antibodies, helps them to targeted the delivery and early detection of cancer cells through their plasmon resonance properties. While some of the magnetic properties of nanoparticles such as iron (Fe), copper (Cu), and carbon NT were also evaluated for detection and treatments of cancer cells. An advanced type of nanoparticles, such as nanobubbles and oxygen-releasing polymers, are helping to address the hypoxia conditions in the cancer microenvironment, while others are employed in photodynamic therapy (PDT) and photothermal therapy (PTT) due to their intrinsic theranostic properties. The green synthesis of nanoparticles has further increased biocompatibility and broadened their applications. In this review paper, we discussed the advancement in nanotechnology and its applications for cancer treatment and diagnostics and highlighted challenges for translation of these advanced nano-based techniques for clinical applications and their green synthesis.
Keywords: Cancer; Conventional Therapy; Diagnostics; Green synthesis; Metallic nanoparticles; Targeted delivery