bims-mosdis Biomed News
on Mosquito distribution and disease
Issue of 2023–01–08
ten papers selected by
Richard Halfpenny, Staffordshire University



  1. Curr Res Parasitol Vector Borne Dis. 2023 ;3 100106
      Insecticide resistance threatens recent progress on malaria control in Africa. To characterize pyrethroid resistance in Uganda, Anopheles gambiae (s.s.) and Anopheles arabiensis were analyzed from 11 sites with varied vector control strategies. Mosquito larvae were collected between May 2018 and December 2020. Sites were categorized as receiving no indoor-residual spraying ('no IRS', n ​= ​3); where IRS was delivered from 2009 to 2014 and in 2017 and then discontinued ('IRS stopped', n ​= ​4); and where IRS had been sustained since 2014 ('IRS active', n ​= ​4). IRS included bendiocarb, pirimiphos methyl and clothianidin. All sites received long-lasting insecticidal nets (LLINs) in 2017. Adult mosquitoes were exposed to pyrethroids; with or without piperonyl butoxide (PBO). Anopheles gambiae (s.s.) and An. arabiensis were identified using PCR. Anopheles gambiae (s.s.) were genotyped for Vgsc-995S/F, Cyp6aa1, Cyp6p4-I236M, ZZB-TE, Cyp4j5-L43F and Coeae1d, while An. arabiensis were examined for Vgsc-1014S/F. Overall, 2753 An. gambiae (s.l.), including 1105 An. gambiae (s.s.) and 1648 An. arabiensis were evaluated. Species composition varied by site; only nine An. gambiae (s.s.) were collected from 'IRS active' sites, precluding species-specific comparisons. Overall, mortality following exposure to permethrin and deltamethrin was 18.8% (148/788) in An. gambiae (s.s.) and 74.6% (912/1222) in An. arabiensis. Mortality was significantly lower in An. gambiae (s.s.) than in An. arabiensis in 'no IRS' sites (permethrin: 16.1 vs 67.7%, P ​< ​0.001; deltamethrin: 24.6 vs 83.7%, P ​< ​0.001) and in 'IRS stopped' sites (permethrin: 11.3 vs 63.6%, P ​< ​0.001; deltamethrin: 25.6 vs 88.9%, P ​< ​0.001). When PBO was added, mortality increased for An. gambiae (s.s.) and An. arabiensis. Most An. gambiae (s.s.) had the Vgsc-995S/F mutation (95% frequency) and the Cyp6p4-I236M resistance allele (87%), while the frequency of Cyp4j5 and Coeae1d were lower (52% and 55%, respectively). Resistance to pyrethroids was widespread and higher in An. gambiae (s.s.). Where IRS was active, An. arabiensis dominated. Addition of PBO to pyrethroids increased mortality, supporting deployment of PBO LLINs. Further surveillance of insecticide resistance and assessment of associations between genotypic markers and phenotypic outcomes are needed to better understand mechanisms of pyrethroid resistance and to guide vector control.
    Keywords:  Anopheles arabiensis; Anopheles gambiae; Piperonyl butoxide (PBO); Pyrethroid resistance; Triple mutation
    DOI:  https://doi.org/10.1016/j.crpvbd.2022.100106
  2. Parasit Vectors. 2023 Jan 02. 16(1): 2
       BACKGROUND: West Nile virus (WNV), primarily vectored by mosquitoes of the genus Culex, is the most important mosquito-borne pathogen in North America, having infected thousands of humans and countless wildlife since its arrival in the USA in 1999. In locations with dedicated mosquito control programs, surveillance methods often rely on frequent testing of mosquitoes collected in a network of gravid traps (GTs) and CO2-baited light traps (LTs). Traps specifically targeting oviposition-seeking (e.g. GTs) and host-seeking (e.g. LTs) mosquitoes are vulnerable to trap bias, and captured specimens are often damaged, making morphological identification difficult.
    METHODS: This study leverages an alternative mosquito collection method, the human landing catch (HLC), as a means to compare sampling of potential WNV vectors to traditional trapping methods. Human collectors exposed one limb for 15 min at crepuscular periods (5:00-8:30 am and 6:00-9:30 pm daily, the time when Culex species are most actively host-seeking) at each of 55 study sites in suburban Chicago, Illinois, for two summers (2018 and 2019).
    RESULTS: A total of 223 human-seeking mosquitoes were caught by HLC, of which 46 (20.6%) were mosquitoes of genus Culex. Of these 46 collected Culex specimens, 34 (73.9%) were Cx. salinarius, a potential WNV vector species not thought to be highly abundant in upper Midwest USA. Per trapping effort, GTs and LTs collected > 7.5-fold the number of individual Culex specimens than HLC efforts.
    CONCLUSIONS: The less commonly used HLC method provides important insight into the complement of human-biting mosquitoes in a region with consistent WNV epidemics. This study underscores the value of the HLC collection method as a complementary tool for surveillance to aid in WNV vector species characterization. However, given the added risk to the collector, novel mitigation methods or alternative approaches must be explored to incorporate HLC collections safely and strategically into control programs.
    Keywords:  Culex salinarius; Human landing catch; Spillover; Vector-borne disease; West Nile virus; Zoonosis
    DOI:  https://doi.org/10.1186/s13071-022-05603-1
  3. J Trop Med. 2022 ;2022 4494660
      Dengue is an important vector-borne disease transmitted by the mosquitoes Aedes aegypti and Ae. albopictus. In the absence of an effective vaccine, vector control has become the key intervention tool in controlling the disease. Vector densities are significantly affected by the changing weather patterns of a region. The present study was conducted in three selected localities, i.e., urban Bandaranayakapura, semiurban Galgamuwa, and rural Buluwala in the Kurunegala district of Sri Lanka to assess spatial and temporal distribution of dengue vector mosquitoes and to predict vector prevalence with respect to changing weather parameters. Monthly ovitrap surveys and larval surveys were conducted from January to December 2019 and continued further in the urban area up to December 2021. Aedes aegypti was found moderately in the urban area and to a lesser extent in semiurban but not in the rural area. Aedes albopictus had the preference for rural over urban areas. Aedes aegypti preferred indoor breeding, while Ae. albopictus preferred both indoor and outdoor. For Ae. albopictus, ovitrap index (OVI), premise index (PI), container index (CI), and Breteau index (BI) correlated with both the rainfall (RF) and relative humidity (RH) of the urban site. Correlations were stronger between OVI and RH and also between BI and RF. Linear regression analysis was fitted, and a prediction model was developed using BI and RF with no lag period (R 2 (sq) = 86.3%; F = 53.12; R 2 (pred) = 63.12%; model: Log10 (BI) = 0.153 + 0.286 ∗ Log10 (RF); RMSE = 1.49). Another prediction model was developed using OVI and RH with one month lag period (R 2 (sq) = 70.21%; F = 57.23; model: OVI predicted = 15.1 + 0.528 ∗ Lag 1 month RH; RMSE = 2.01). These two models can be used to monitor the population dynamics of Ae. albopictus in urban settings to predict possible dengue outbreaks.
    DOI:  https://doi.org/10.1155/2022/4494660
  4. Malar J. 2023 Jan 02. 22(1): 1
       BACKGROUND: Declines in global malaria cases and deaths since the millennium are currently challenged by multiple factors including funding limitations, limits of, and resistance to vector control tools, and also recent spread of the invasive vector species, Anopheles stephensi-especially into novel urban settings where malaria rates are typically low. Coupled with general increases in urbanization and escalations in the number of conflicts creating rapid and unplanned population displacement into temporary shelter camps within host urban areas, particularly in the Middle East and sub-Saharan Africa, increased urban malaria is a major threat to control and elimination.
    METHODS: Entomological monitoring surveys (targeting Aedes aegypti) of water containers across urban areas hosting internally displaced people (IDP) communities in Aden city, Yemen, were performed by The MENTOR Initiative, a non-governmental organisation. As part of these surveys in 2021 23 larvae collected and raised to adults were morphologically identified as An. stephensi. Twelve of the samples were sent to Liverpool School of Tropical Medicine for independent morphological assessment and genetic analysis by sequencing the ribosomal ITS2 region and the mitochondrial COI gene.
    RESULTS: All twelve samples were confirmed morphologically and by sequence comparison of the single ITS2 and COI haplotype detected to the NCBI BLAST database as An. stephensi. Phylogenetic analysis with comparable COI sequences indicated close relationship to haplotypes found in Djibouti and Ethiopia.
    CONCLUSION: The study results confirm the presence of An. stephensi in Yemen. Confirmation of the species in multiple urban communities hosting thousands of IDPs living in temporary shelters with widescale dependency on open water containers is of particular concern due to the vulnerability of the population and abundance of favourable breeding sites for the vector. Proactive monitoring and targeted integrated vector management are required to limit impacts in this area of typically low malaria transmission, and to prevent further the spread of An. stephensi within the region.
    Keywords:  Anopheles stephensi; Conflict; Internally displaced people; Malaria; Temporary shelter; Urban vector; Water containers; Yemen
    DOI:  https://doi.org/10.1186/s12936-022-04427-9
  5. Sci Rep. 2023 Jan 04. 13(1): 130
      Laboratory and field-based studies of the invasive mosquito Aedes albopictus demonstrate its competency to transmit over twenty different pathogens linked to a broad range of vertebrate hosts. The vectorial capacity of Ae. albopictus to transmit these pathogens remains unclear, partly due to knowledge gaps regarding its feeding behavior. Blood meal analyses from field-captured specimens have shown vastly different feeding patterns, with a wide range of anthropophagy (human feeding) and host diversity. To address this knowledge gap, we asked whether differences in innate host preference may drive observed variation in Ae. albopictus feeding patterns in nature. Low generation colonies (F2-F4) were established with field-collected mosquitoes from three populations with high reported anthropophagy (Thailand, Cameroon, and Florida, USA) and three populations in the United States with low reported anthropophagy (New York, Maryland, and Virginia). The preference of these Ae. albopictus colonies for human versus non-human animal odor was assessed in a dual-port olfactometer along with control Ae. aegypti colonies already known to show divergent behavior in this assay. All Ae. albopictus colonies were less likely (p < 0.05) to choose the human-baited port than the anthropophilic Ae. aegypti control, instead behaving similarly to zoophilic Ae. aegypti. Our results suggest that variation in reported Ae. albopictus feeding patterns are not driven by differences in innate host preference, but may result from differences in host availability. This work is the first to compare Ae. albopictus and Ae. aegypti host preference directly and provides insight into differential vectorial capacity and human feeding risk.
    DOI:  https://doi.org/10.1038/s41598-022-26591-3
  6. Nat Microbiol. 2023 Jan;8(1): 135-149
      Aedes aegypti and A. albopictus mosquitoes are the main vectors for dengue virus (DENV) and other arboviruses, including Zika virus (ZIKV). Understanding the factors that affect transmission of arboviruses from mosquitoes to humans is a priority because it could inform public health and targeted interventions. Reasoning that interactions among viruses in the vector insect might affect transmission, we analysed the viromes of 815 urban Aedes mosquitoes collected from 12 countries worldwide. Two mosquito-specific viruses, Phasi Charoen-like virus (PCLV) and Humaita Tubiacanga virus (HTV), were the most abundant in A. aegypti worldwide. Spatiotemporal analyses of virus circulation in an endemic urban area revealed a 200% increase in chances of having DENV in wild A. aegypti mosquitoes when both HTV and PCLV were present. Using a mouse model in the laboratory, we showed that the presence of HTV and PCLV increased the ability of mosquitoes to transmit DENV and ZIKV to a vertebrate host. By transcriptomic analysis, we found that in DENV-infected mosquitoes, HTV and PCLV block the downregulation of histone H4, which we identify as an important proviral host factor in vivo.
    DOI:  https://doi.org/10.1038/s41564-022-01289-4
  7. PLoS One. 2023 ;18(1): e0280066
      Population subdivision among several neotropical malaria vectors has been widely evaluated; however, few studies have analyzed population variation at a microgeographic scale, wherein local environmental variables may lead to population differentiation. The aim of the present study was to evaluate the genetic and geometric morphometric structure of Anopheles nuneztovari and Anopheles albimanus in endemic localities of northwestern Colombia. Genetic and phenetic structures were evaluated using microsatellites markers and wing geometric morphometrics, respectively. In addition, entomological indices of importance in transmission were calculated. Results showed that the main biting peaks of Anopheles nuneztovari were between 20:00 and 22:00, whereas Anopheles albimanus exhibited more variation in biting times among localities. Infection in An. nuneztovari by Plasmodium spp. (IR: 4.35%) and the annual entomological inoculation rate (30.31), indicated high vector exposure and local transmission risk. We did not detect Plasmodium-infected An. albimanus in this study. In general, low genetic and phenetic subdivision among the populations of both vectors was detected using a combination of phenotypic, genetic and environmental data. The results indicated high regional gene flow, although local environmental characteristics may be influencing the wing conformation differentiation and behavioral variation observed in An. albimanus. Furthermore, the population subdivision detected by microsatellite markers for both species by Bayesian genetic analysis provides a more accurate picture of the current genetic structure in comparison to previous studies. Finally, the biting behavior variation observed for both vectors among localities suggests the need for continuous malaria vector surveys covering the endemic region to implement the most effective integrated local control interventions.
    DOI:  https://doi.org/10.1371/journal.pone.0280066
  8. Malar J. 2023 Jan 05. 22(1): 3
       BACKGROUND: The Democratic Republic of the Congo (DRC) is the second most malaria-affected country in the world with 21,608,681 cases reported in 2019. The Kongo Central (KC) Province has a malaria annual incidence of 163 cases/per 1000 inhabitants which are close to the national average of 153.4/1000. However, the malaria prevalence varies both between and within health zones in this province. The main objective of this study was to describe the epidemiology and transmission of malaria among children aged 0 to 10 years in the 4 highest endemic health areas in Kisantu Health Zone (HZ) of KC in DRC.
    METHODS: A community-based cross-sectional study was conducted from October to November 2017 using multi-stage sampling. A total of 30 villages in 4 health areas in Kisantu HZ were randomly selected. The prevalence of malaria was measured using a thick blood smear (TBS) and known predictors and associated outcomes were assessed. Data are described and association determinants of malaria infection were analysed.
    RESULTS: A total of 1790 children between 0 and 10 years were included in 30 villages in 4 health areas of Kisantu HZ. The overall prevalence in the study area according to the TBS was 14.8% (95% CI: 13.8-16.6; range: 0-53). The mean sporozoite rate in the study area was 4.3% (95% CI: 2.6-6.6). The determination of kdr-west resistance alleles showed the presence of both L1014S and L1014F with 14.6% heterozygous L1014S/L1014F, 84.4% homozygous 1014F, and 1% homozygous 1014S. The risk factors associated with malaria infection were ground or wooden floors aOR: 15.8 (95% CI: 8.6-29.2), a moderate or severe underweight: 1.5 (1.1-2.3) and to be overweight: 1.9 (95% CI: 1.3-2.7).
    CONCLUSION: Malaria prevalence differed between villages and health areas within the same health zone. The control strategy activities must be oriented by the variety in the prevalence and transmission of malaria in different areas. The policy against malaria regarding long-lasting insecticidal nets should be based on the evidence of metabolic resistance.
    Keywords:  Democratic Republic of the Congo; Determinants; Kisantu; Malaria infection
    DOI:  https://doi.org/10.1186/s12936-022-04415-z
  9. JAMA Netw Open. 2023 Jan 03. 6(1): e2249440
       Importance: Dengue fever is a climate-sensitive infectious disease. However, its association with local hydrological conditions and the role of city development remain unclear.
    Objective: To quantify the association between hydrological conditions and dengue fever incidence in China and to explore the modification role of city development in this association.
    Design, Setting, and Participants: This cross-sectional study collected data between January 1, 2013, and December 31, 2019, from 54 cities in 4 coastal provinces in southeast China. The Standardized Precipitation Evapotranspiration Index (SPEI) was calculated from ambient temperature and precipitation, with SPEI thresholds of 2 for extreme wet conditions and -2 for extreme dry conditions. The SPEI-dengue fever incidence association was examined over a 6-month lag, and the modification roles of 5 city development dimensions were assessed. Data were analyzed in May 2022.
    Exposures: City-level monthly temperature, precipitation, SPEI, and annual city development indicators from 2013 to 2019.
    Main Outcomes and Measures: The primary outcome was city-level monthly dengue fever incidence. Spatiotemporal bayesian hierarchal models were used to examine the SPEI-dengue fever incidence association over a 6-month lag period. An interaction term between SPEI and each city development indicator was added into the model to assess the modification role of city development.
    Results: Included in the analysis were 70 006 dengue fever cases reported in 54 cities in 4 provinces in China from 2013 to 2019. Overall, a U-shaped cumulative curve was observed, with wet and dry conditions both associated with increased dengue fever risk. The relative risk [RR] peaked at a 1-month lag for extreme wet conditions (1.27; 95% credible interval [CrI], 1.05-1.53) and at a 6-month lag for extreme dry conditions (1.63; 95% CrI, 1.29-2.05). The RRs of extreme wet and dry conditions were greater in areas with limited economic development, health care resources, and income per capita. Extreme dry conditions were higher and prolonged in areas with more green space per capita (RR, 1.84; 95% CrI, 1.37-2.46). Highly urbanized areas had a higher risk of dengue fever after extreme wet conditions (RR, 1.80; 95% CrI, 1.26-2.56), while less urbanized areas had the highest risk of dengue fever in extreme dry conditions (RR, 1.70; 95% CrI, 1.11-2.60).
    Conclusions and Relevance: Results of this study showed that extreme hydrological conditions were associated with increased dengue fever incidence within a 6-month lag period, with different dimensions of city development playing various modification roles in this association. These findings may help in developing climate change adaptation strategies and public health interventions against dengue fever.
    DOI:  https://doi.org/10.1001/jamanetworkopen.2022.49440
  10. Malar J. 2023 Jan 05. 22(1): 4
       BACKGROUND: Since 2013, the National Malaria Control Programme in mainland Tanzania and the Zanzibar Malaria Elimination Programme have implemented mass insecticide-treated net (ITN) distribution campaigns, routine ITN distribution to pregnant women and infants, and continuous distribution through primary schools (mainland) and community leaders (Zanzibar) to further malaria control efforts. Mass campaigns are triggered when ITN access falls below 40%. In this context, there is a need to monitor ITN access annually to assess whether it is below threshold and inform quantification of ITNs for the following year. Annual estimates of access are needed at the council level to inform programmatic decision-making.
    METHODS: An age-structured stock and flow model was used to predict annual net crops from council-level distribution data in Tanzania from 2012 to 2020 parameterized with a Tanzania-specific net median lifespan of 2.15 years. Annual nets-per-capita (NPC) was calculated by dividing each annual net crop by mid-year council projected population. A previously fit nonparametric conditional quantile function for the proportion of the population with access to an ITN (ITN access) as a function of NPC was used to predict ITN access at the council level based on the predicted NPC value. These estimates were compared to regional-level ITN access from large household surveys.
    RESULTS: For regions with the same ITN strategy for all councils, predicted council-level ITN access was consistent with regional-level survey data for 79% of councils. Regions where ITN strategy varied by council had regional estimates of ITN access that diverged from the council-specific estimates. Predicted ITN access reached 60% only when "nets issued as a percentage of the council population" (NPP) exceeded 15%, and approached 80% ITN access when NPP was at or above 20%.
    CONCLUSION: Modelling ITN access with country-specific net decay rates, council-level population, and ITN distribution data is a promising approach to monitor ITN coverage sub-regionally and between household surveys in Tanzania and beyond.
    Keywords:  Bed net; Community-based; Distribution; ITN; Insecticide-treated net; Malaria control; Quantification; School; Sub-regional; Tanzania; Vector control; Zanzibar
    DOI:  https://doi.org/10.1186/s12936-022-04432-y