bims-mosdis Biomed News
on Mosquito distribution and disease
Issue of 2022–10–09
fiveteen papers selected by
Richard Halfpenny, Staffordshire University



  1. Parasit Vectors. 2022 Oct 01. 15(1): 351
       BACKGROUND: The control of the Asian tiger mosquito Aedes albopictus (Diptera: Culicidae) is crucial owing to its high vector competence for more than 20 arboviruses-the most important being dengue, chikungunya and Zika virus. Aedes albopictus has an enormous adaptive potential, and its invasive spreading across urban and suburban environments poses challenges for its control. Therefore, all suitable, cost-effective and eco-friendly control tools should be put into practice. In this context, cyclopoid copepods are already known as effective predators of mosquito larvae. This study reports an essential preliminary step towards the integration of copepods into the vector control strategy in Germany, in order to provide a sustainable tool in an integrated control strategy based on the elimination or sanitation of breeding sites, the use of formulations based on Bacillus thuringiensis israelensis (Bti.) and the sterile insect technique (SIT).
    METHODS: The predatory potential of native cyclopoid copepods, namely the field-derived species Megacyclops viridis (Crustacea: Cyclopidae), was examined against the larvae of Ae. albopictus, and for comparison, against the larvae of the common house mosquito, Culex pipiens sensu lato (Diptera: Culicidae). The use of different larval instars as prey, and various predator-to-prey ratios, were examined under laboratory and semi-field conditions. The compatibility of Bti. applications along with the use of copepods was assessed in the laboratory.
    RESULTS: High predation efficiency of M. viridis upon first-instar larvae of Ae. albopictus was observed under laboratory (up to 96%) and semi-field conditions (65.7%). The copepods did not prey upon stages further developed than the first instars, and in comparison with Ae. albopictus, the predation rates on the larvae of Cx. pipiens s.l. were significantly lower.
    CONCLUSIONS: The results indicate a high predation potential of M. viridis against Ae. albopictus larvae, even though strong larval stage and mosquito species preferences were implicated. The integration of copepods as a promising biocontrol agent to the vector control strategy in Germany is therefore highly recommended, especially because of the excellent compatibility of copepods with the use of Bti. However, further research is required, concerning all the probable parameters that may impact the copepod performance under natural conditions.
    Keywords:  Aedes albopictus; Arboviruses; Copepoda; Megacyclops viridis; Predatory potential; Vector control
    DOI:  https://doi.org/10.1186/s13071-022-05460-y
  2. Saudi J Biol Sci. 2022 Dec;29(12): 103448
      Mosquitoes transmit many diseases to humans and animals e.g., malaria, yellow fever, dengue, filariasis and encephalitis. The fundamental target of this search was to study the effect of three different blood meal sources (human; rabbit and pigeon) on some biological and behavioral properties of Aedes aegypti and Culex pipiens. The results have assured that the females of the mosquito Ae. aegypti that were fed on human blood meal has registered the highest feeding activity from feeding on the blood meal whereas the females of the other mosquito Cx. pipiens have shown the highest feeding activity after being fed on pigeons when compared with its feeding on other factors. The results have shown non-significant variation in the average time necessary to digest the blood meal on both mosquito species Ae. aegypti and Cx. pipiens that were fed on vertebrate hosts under laboratory conditions. Furthermore, results assured that the difference in blood meal sources has yielded distinct variation in the reproductive capacity and efficiency of both female mosquitoes under investigation where both species Ae. aegypti and Cx. pipiens already fed on human blood meal have yielded a pronounced distinctive increase in egg production (oviposition) when compared with females that were fed on pigeon or rabbit blood meal respectively. Moreover, feeding of the female mosquitoes under lab conditions on different blood meal sources did not affect the level of the hatching eggs that were laid by both mosquito females.
    Keywords:  Aedes aegypti; Biological and behavioral characteristics; Culex pipiens; Digestion of blood meal; Feeding preference
    DOI:  https://doi.org/10.1016/j.sjbs.2022.103448
  3. Environ Microbiol. 2022 Oct 06.
      Aedes aegypti mosquito eggs can remain quiescent for many months before hatching, allowing populations to persist through unfavorable conditions. Aedes aegypti infected with the Wolbachia strain wMel have been released in tropical and subtropical regions for dengue control. wMel reduces the viability of quiescent eggs, but this physiological cost might be expected to evolve in natural mosquito populations that frequently experience stressful conditions. We found that the cost of wMel infection differed consistently between mosquitoes collected from different locations and became weaker across laboratory generations, suggesting environment-specific adaptation of mosquitoes to the wMel infection. Reciprocal crossing experiments show that differences in the cost of wMel to quiescent egg viability were mainly due to mosquito genetic background and not Wolbachia origin. wMel-infected mosquitoes hatching from long-term quiescent eggs showed partial loss of cytoplasmic incompatibility and female infertility, highlighting additional costs of long-term quiescence. Our study provides the first evidence for a shift in Wolbachia phenotypic effects following deliberate field release and establishment and it highlights interactions between Wolbachia infections and mosquito genetic backgrounds. The unexpected changes in fitness costs observed here suggest potential tradeoffs with undescribed fitness benefits of the wMel infection. This article is protected by copyright. All rights reserved.
    DOI:  https://doi.org/10.1111/1462-2920.16235
  4. PLoS Negl Trop Dis. 2022 Oct 06. 16(10): e0010835
      The transmission cycle of West Nile virus (WNV) involves multiple species of birds. The relative importance of various bird species to the overall transmission is often inferred from the level and duration of viremia that they experience upon infection. Reports utilizing in vitro feeding techniques suggest that the source and condition of blood in which arboviruses are fed to mosquitoes can significantly alter the infectiousness of arbovirus to mosquitoes. We confirmed this using live hosts. A series of mosquito feedings with Culex pipiens was conducted on WNV-infected American robins and common grackles over a range of viremias. Mosquitoes were assayed individually by plaque assay for WNV at 3 to 7 days after feeding. At equivalent viremia, robins always infected more mosquitoes than did grackles. We conclude that the infectiousness of viremic birds cannot always be deduced from viremia alone. If information concerning the infectiousness of a particular bird species is important, such information is best acquired by feeding mosquitoes directly on experimentally infected individuals of that species.
    DOI:  https://doi.org/10.1371/journal.pntd.0010835
  5. Malar J. 2022 Oct 02. 21(1): 279
       BACKGROUND: Countries in the southern Africa region have set targets for malaria elimination between 2020 and 2030. Malaria vector control is among the key strategies being implemented to achieve this goal. This paper critically reviews published entomological research over the past six decades in three frontline malaria elimination countries namely, Botswana Eswatini and Namibia, and three second-line malaria elimination countries including Mozambique, Zambia, and Zimbabwe. The objective of the review is to assess the current knowledge and highlight gaps that need further research attention to strengthen evidence-based decision-making toward malaria elimination.
    METHODS: Publications were searched on the PubMed engine using search terms: "(malaria vector control OR vector control OR malaria vector*) AND (Botswana OR Swaziland OR Eswatini OR Zambia OR Zimbabwe OR Mozambique)". Opinions, perspectives, reports, commentaries, retrospective analysis on secondary data protocols, policy briefs, and reviews were excluded.
    RESULTS: The search resulted in 718 publications with 145 eligible and included in this review for the six countries generated over six decades. The majority (139) were from three countries, namely Zambia (59) and Mozambique (48), and Zimbabwe (32) whilst scientific publications were relatively scanty from front-line malaria elimination countries, such as Namibia (2), Botswana (10) and Eswatini (4). Most of the research reported in the publications focused on vector bionomics generated mostly from Mozambique and Zambia, while information on insecticide resistance was mostly available from Mozambique. Extreme gaps were identified in reporting the impact of vector control interventions, both on vectors and disease outcomes. The literature is particularly scanty on important issues such as change of vector ecology over time and space, intervention costs, and uptake of control interventions as well as insecticide resistance.
    CONCLUSIONS: The review reveals a dearth of information about malaria vectors and their control, most noticeable among the frontline elimination countries: Namibia, Eswatini and Botswana. It is of paramount importance that malaria vector research capacity and routine entomological monitoring and evaluation are strengthened to enhance decision-making, considering changing vector bionomics and insecticide resistance, among other determinants of malaria vector control.
    Keywords:  Malaria elimination; Malaria vectors; Southern African region; Vector control
    DOI:  https://doi.org/10.1186/s12936-022-04292-6
  6. PLoS One. 2022 ;17(10): e0272655
      Indoor residual spraying (IRS) has been and remains an important malaria control intervention in southern Mozambique, South Africa and Eswatini. A better understanding of the effectiveness of IRS campaigns is critical to guide future elimination efforts. We analyze the three IRS campaigns conducted during a malaria elimination demonstration project in southern Mozambique, the "Magude project", and propose a new method to calculate the efficacy of IRS campaigns adjusting for IRS coverage, pace of house spraying and IRS residual efficacy on different wall types. Anopheles funestus sensu lato (s.l.) and An. gambiae s.l. were susceptible to pirimiphos-methyl and DDT. Anopheles funestus s.l. was resistant to pyrethroids, with 24h post-exposure mortality being lower for An. funestus sensu stricto (s.s.) than for An. parensis (collected indoors). The percentage of structures sprayed was above 90% and percentage of people covered above 86% in all three IRS campaigns. The percentage of households sprayed was above 83% in 2015 and 2016, but not assessed in 2017. Mosquito mortality 24h post-exposure stayed above 80% for 196 days after the 2016 IRS campaign and 222 days after the 2017 campaign and was 1.5 months longer on mud walls than on cement walls. This was extended by up to two months when 120h post-exposure mortality was considered. The district-level realized IRS efficacy was 113 days after the 2016 campaign. While the coverage of IRS campaigns in Magude were high, IRS protection did not remain optimal for the entire high malaria transmissions season. The use of a longer-lasting IRS product could have further supported the interruption of malaria transmission in the district. To better estimate the protection afforded by IRS campaigns, National Malaria Control Programs and partners are encouraged to adjust the calculation of IRS efficacy for IRS coverage, pace of house spraying during the campaign and IRS efficacy on different wall types combined with wall type distribution in the sprayed area.
    DOI:  https://doi.org/10.1371/journal.pone.0272655
  7. Pathog Glob Health. 2022 Oct 07. 1-14
      Following transfer into the primary arbovirus vector Aedes aegypti, several strains of the intracellular bacterium Wolbachia have been shown to inhibit the transmission of dengue, Zika, and chikungunya viruses, important human pathogens that cause significant morbidity and mortality worldwide. In addition to pathogen inhibition, many Wolbachia strains manipulate host reproduction, resulting in an invasive capacity of the bacterium in insect populations. This has led to the deployment of Wolbachia as a dengue control tool, and trials have reported significant reductions in transmission in release areas. Here, we discuss the possible mechanisms of Wolbachia-virus inhibition and the implications for long-term success of dengue control. We also consider the evidence presented in several reports that Wolbachia may cause an enhancement of replication of certain viruses under particular conditions, and conclude that these should not cause any concerns with respect to the application of Wolbachia to arbovirus control.
    Keywords:  Wolbachia; aedes; arbovirus; dengue; mosquito
    DOI:  https://doi.org/10.1080/20477724.2022.2117939
  8. Parasitol Res. 2022 Oct 08.
      The Atlantic Forests outside of the Amazon region in Brazil are low-frequency malaria hotspots. The disease behaves as a zoonosis maintained by nonhuman primates (NHPs), especially howler monkeys. Between 2016 and 2018, Brazil witnessed the largest yellow fever outbreak since 1980, resulting in massive declines in these NHP populations. However, reports of malaria cases continued in transmission areas. This scenario motivated this survey to determine the frequency of infection of the anophelines by Plasmodium species. Mosquitoes were captured using Shannon traps and CDC light traps and identified as to species based on morphological characters. The screening for malaria parasites targeted only Anopheles species belonging to the subgenus Kerteszia, the proven primary malaria vector. A TaqMan qPCR assay using ribosomal primers (18S rRNA gene) was performed in a Step One Plus Real-time PCR to detect Plasmodium species. Seven hundred sixty field-caught anophelines divided into 76 pools were examined. Out of 76 tested pools, seven (9.21%) were positive. Three pools were Plasmodium malariae-positive, and four were Plasmodium vivax-positive. The anopheline infection was expressed as the maximum infection rate (MIR), disclosing a value of 0.92%, indicative of a steady state. Such stability after the yellow fever outbreak suggests that other species of NHPs could support transmission.
    Keywords:  Anopheles; Bromelia; Mosquito vectors; Plasmodium
    DOI:  https://doi.org/10.1007/s00436-022-07689-z
  9. PLoS Negl Trop Dis. 2022 Oct 04. 16(10): e0010818
      In models of mosquito-borne transmission, the mosquito biting rate is an influential parameter, and understanding the heterogeneity of the process of biting is important, as biting is usually assumed to be relatively homogeneous across individuals, with time-between-bites described by an exponentially distributed process. However, these assumptions have not been addressed through laboratory experimentation. We experimentally investigated the daily biting habits of Ae. aegypti at three temperatures (24°C, 28°C, and 32°C) and determined that there was individual heterogeneity in biting habits (number of bites, timing of bites, etc.). We further explored the consequences of biting heterogeneity using an individual-based model designed to examine whether a particular biting profile determines whether a mosquito is more or less likely to 1) become exposed given a single index case of dengue (DENV) and 2) transmit to a susceptible human individual. Our experimental results indicate that there is heterogeneity among individuals and among temperature treatments. We further show that this results in altered probabilities of transmission of DENV to and from individual mosquitoes based on biting profiles. While current model representation of biting may work under some conditions, it might not uniformly be the best fit for this process. Our data also confirm that biting is a non-monotonic process with temperatures around 28°C being optimum.
    DOI:  https://doi.org/10.1371/journal.pntd.0010818
  10. Cochrane Database Syst Rev. 2022 Oct 06. 10 CD013398
       BACKGROUND: Malaria remains an important public health problem. Research in 1900 suggested house modifications may reduce malaria transmission. A previous version of this review concluded that house screening may be effective in reducing malaria. This update includes data from five new studies.
    OBJECTIVES: To assess the effects of house modifications that aim to reduce exposure to mosquitoes on malaria disease and transmission.
    SEARCH METHODS: We searched the Cochrane Infectious Diseases Group Specialized Register; Central Register of Controlled Trials (CENTRAL), published in the Cochrane Library; MEDLINE (PubMed); Embase (OVID); Centre for Agriculture and Bioscience International (CAB) Abstracts (Web of Science); and the Latin American and Caribbean Health Science Information database (LILACS) up to 25 May 2022. We also searched the World Health Organization International Clinical Trials Registry Platform, ClinicalTrials.gov, and the ISRCTN registry to identify ongoing trials up to 25 May 2022.
    SELECTION CRITERIA: Randomized controlled trials, including cluster-randomized controlled trials (cRCTs), cross-over studies, and stepped-wedge designs were eligible, as were quasi-experimental trials, including controlled before-and-after studies, controlled interrupted time series, and non-randomized cross-over studies. We sought studies investigating primary construction and house modifications to existing homes reporting epidemiological outcomes (malaria case incidence, malaria infection incidence or parasite prevalence). We extracted any entomological outcomes that were also reported in these studies.
    DATA COLLECTION AND ANALYSIS: Two review authors independently selected eligible studies, extracted data, and assessed the risk of bias. We used risk ratios (RR) to compare the effect of the intervention with the control for dichotomous data. For continuous data, we presented the mean difference; and for count and rate data, we used rate ratios. We presented all results with 95% confidence intervals (CIs). We assessed the certainty of evidence using the GRADE approach.
    MAIN RESULTS: One RCT and six cRCTs met our inclusion criteria, with an additional six ongoing RCTs. We did not identify any eligible non-randomized studies. All included trials were conducted in sub-Saharan Africa since 2009; two randomized by household and four at the block or village level. All trials assessed screening of windows, doors, eaves, ceilings, or any combination of these; this was either alone, or in combination with roof modification or eave tube installation (an insecticidal "lure and kill" device that reduces mosquito entry whilst maintaining some airflow). In one trial, the screening material was treated with 2% permethrin insecticide. In five trials, the researchers implemented the interventions. A community-based approach was adopted in the other trial. Overall, the implementation of house modifications probably reduced malaria parasite prevalence (RR 0.68, 95% CI 0.57 to 0.82; 5 trials, 5183 participants; moderate-certainty evidence), although an inconsistent effect was observed in a subpopulation of children in one study. House modifications reduced moderate to severe anaemia prevalence (RR 0.70, 95% CI 0.55 to 0.89; 3 trials, 3643 participants; high-certainty evidence). There was no consistent effect on clinical malaria incidence, with rate ratios ranging from 0.38 to 1.62 (3 trials, 3365 participants, 4126.6 person-years). House modifications may reduce indoor mosquito density (rate ratio 0.63, 95% CI 0.30 to 1.30; 4 trials, 9894 household-nights; low-certainty evidence), although two studies showed little effect on this parameter.
    AUTHORS' CONCLUSIONS: House modifications - largely screening, sometimes combined with insecticide and lure and kill devices - were associated with a reduction in malaria parasite prevalence and a reduction in people with anaemia. Findings on malaria incidence were mixed. Modifications were also associated with lower indoor adult mosquito density, but this effect was not present in some studies.
    DOI:  https://doi.org/10.1002/14651858.CD013398.pub4
  11. IJID Reg. 2022 Dec;5 68-71
      Mosquito-borne viral infections are a major concern in endemic areas, such as Africa. Although outbreaks have been reported throughout Africa, only a few surveillance studies have been conducted in Gabon since the outbreaks of dengue virus (DENV) and chikungunya virus (CHIKV) in 2010. Therefore, the current situation is unknown. This study aimed to investigate the presence of arboviruses, especially DENV (serotypes 1-4), CHIKV, and Zika virus (ZIKV), in Gabon, Central Africa. Between 2020 and 2021, we collected 1060 serum samples from febrile patients and screened them against viruses using reverse transcription-quantitative PCR. We detected two DENV serotypes 1 (DENV-1), one CHIKV, and one ZIKV, and subsequently analyzed the genome sequences. To determine the genetic diversity and transmission route of the viruses, phylogenetic analysis was performed using complete or partial genome sequences. The DENV-1 and CHIKV strains detected in this study were closely related to the previous Gabonese strains, whereas the recent ZIKV strain was genetically different from a strain detected in 2007 in Gabon. This study provides new genomic information on DENV-1, CHIKV, and ZIKV that were detected in Gabon and insight into the circulation of the viruses in the country and their introduction from neighboring African countries.
    Keywords:  Africa; Gabon; Zika virus; chikungunya virus; dengue virus; phylogeny
    DOI:  https://doi.org/10.1016/j.ijregi.2022.08.013
  12. Am J Trop Med Hyg. 2022 Oct 03. pii: tpmd220166. [Epub ahead of print]
      In urban settings in malaria-endemic countries, malaria incidence is not well characterized and assumed to be typically very low and consisting largely of imported infections. In such contexts, surveillance systems should adapt to ensure that data are of sufficient spatial and temporal resolution to inform appropriate programmatic interventions. The aim of this research was to 1) assess spatial and temporal trends in reported malaria cases in Maputo City, Mozambique, using an expanded case notification form and 2) to determine how malaria surveillance can be optimized to characterize the local epidemiological context, which can then be used to inform targeted entomological investigations and guide implementation of localized malaria responses. This study took place in all six health facilities of KaMavota District in Maputo City, Mozambique. A questionnaire was administered to all confirmed cases from November 2019 to August 2021. Households of cases were retrospectively geolocated using local landmarks as reference. Overall, 2,380 malaria cases were reported, with the majority being uncomplicated (97.7%) and a median age of 21 years; 70.8% of cases had reported traveling outside the city in the past month with nine reporting traveling internationally. Maps of the 1,314 malaria cases that were geolocated showed distinct spatial patterns. The expanded case notification form enables a more granular overview of the malaria epidemiology in Maputo City; the geolocation data clearly show the areas where endemic transmission is likely, thus informing where resources should be prioritized. As urbanization is rapidly increasing in malaria endemic areas, identifying systems and key variables to collect ensures an operational way to characterize urban malaria through optimization of routine data to inform decision-making.
    DOI:  https://doi.org/10.4269/ajtmh.22-0166
  13. Trop Med Health. 2022 Oct 04. 50(1): 73
       BACKGROUND: Malaria is a global infectious (vector-borne: Anopheles mosquitoes) disease which is a leading cause of morbidity and mortality in Sub-Saharan Africa (SSA). Among all its parasitic (protozoan: Plasmodium sp.) variants, Plasmodium falciparum (PF) is the most virulent and responsible for above 90% of global malaria deaths hence making it a global public health threat.
    MAIN CONTEXT: Despite current front-line antimalarial treatments options especially allopathic medications and malaria prevention (and control) strategies especially governmental policies and community malaria intervention programs in SSA, PF infections remains prevalent due to increased antimicrobial/antimalarial drug resistance caused by several factors especially genetic mutations and auto(self)-medication practices in SSA. In this article, we focused on the Democratic Republic of Congo (DRC) as the largest SSA country by bringing perspective into the impact of self-medication and antimalarial drug resistance, and provided recommendation for long-term improvement and future analysis in malaria prevention and control in SSA.
    CONCLUSIONS: Self-medication and anti-malarial drug resistance is a major challenge to malaria control in DRC and sub-Saharan Africa, and to achieve sustainable control, individual, community and governmental efforts must be aligned to stop self-medication, and strengthen the health systems against malaria.
    Keywords:  Antimalarials; Democratic Republic of Congo; Drug resistance; Malaria; Self-medication
    DOI:  https://doi.org/10.1186/s41182-022-00466-9
  14. Clin Infect Dis. 2022 Oct 03. pii: ciac794. [Epub ahead of print]
      In Australia, Japanese encephalitis virus circulated in tropical north Queensland between 1995 and 2005. In 2022, a dramatic range expansion across the southern states has resulted in 30 confirmed human cases and six deaths. We discuss the outbreak drivers and estimate the potential size of the human population at risk.
    Keywords:  Japanese encephalitis; emerging diseases; transmission pathways; zoonoses
    DOI:  https://doi.org/10.1093/cid/ciac794
  15. Rev Soc Bras Med Trop. 2022 ;pii: S0037-86822022000100625. [Epub ahead of print]55 e00722022
       BACKGROUND: The influence of climate on the epidemiology of dengue has scarcely been studied in Cartagena.
    METHODS: The relationship between dengue cases and climatic and macroclimatic factors was explored using an ecological design and bivariate and time-series analyses during lag and non-lag months. Data from 2008-2017 was obtained from the national surveillance system and meteorological stations.
    RESULTS: Cases correlated only with climatic variables during lag and non-lag months. Decreases in precipitation and humidity and increases in temperature were correlated with an increase in cases.
    CONCLUSIONS: Our findings provide useful information for establishing and strengthening dengue prevention and control strategies.
    DOI:  https://doi.org/10.1590/0037-8682-0072-2022