bims-mosdis Biomed News
on Mosquito distribution and disease
Issue of 2022‒09‒04
nine papers selected by
Richard Halfpenny
Staffordshire University

  1. Parasit Vectors. 2022 Aug 27. 15(1): 303
      BACKGROUND: Aedes albopictus is a highly invasive species and an important vector of dengue and chikungunya viruses. Indigenous to Southeast Asia, Ae. albopictus has successfully invaded every inhabited continent, except Antarctica, in the past 80 years. Vector surveillance and control at points of entry (PoE) is the most critical front line of defence against the introduction of Ae. albopictus to new areas. Identifying the pathways by which Ae. albopictus are introduced is the key to implementing effective vector surveillance to rapidly detect introductions and to eliminate them.METHODS: A literature review was conducted to identify studies and data sources reporting the known and suspected dispersal pathways of human-mediated Ae. albopictus dispersal between 1940-2020. Studies and data sources reporting the first introduction of Ae. albopictus in a new country were selected for data extraction and analyses.
    RESULTS: Between 1940-2020, Ae. albopictus was reported via various dispersal pathways into 86 new countries. Two main dispersal pathways were identified: (1) at global and continental spatial scales, maritime sea transport was the main dispersal pathway for Ae. albopictus into new countries in the middle to late 20th Century, with ships carrying used tyres of particular importance during the 1980s and 1990s, and (2) at continental and national spatial scales, the passive transportation of Ae. albopictus in ground vehicles and to a lesser extent the trade of used tyres and maritime sea transport appear to be the major drivers of Ae. albopictus dispersal into new countries, especially in Europe. Finally, the dispersal pathways for the introduction and spread of Ae. albopictus in numerous countries remains unknown, especially from the 1990s onwards.
    CONCLUSIONS: This review identified the main known and suspected dispersal pathways of human-mediated Ae. albopictus dispersal leading to the first introduction of Ae. albopictus into new countries and highlighted gaps in our understanding of Ae. albopictus dispersal pathways. Relevant advances in vector surveillance and genomic tracking techniques are presented and discussed in the context of improving vector surveillance.
    Keywords:  Aedes albopictus; Citizen science; Dispersal; Dispersal pathways; Genomics; Spatial scales; Vector surveillance
  2. Acta Trop. 2022 Aug 25. pii: S0001-706X(22)00360-6. [Epub ahead of print] 106668
      Aedes aegypti and Aedes albopictus are important vectors for several arboviruses such as the dengue virus. The chemical control of Aedes spp., which is usually implemented, affects both humans and the environment. The biological control of Aedes spp. with entomopathogenic bacteria such as Photorhabdus and Xenorhabdus may be an alternative method that can overcome such issues. This study aimed to isolate and identify Photorhabdus and Xenorhabdus bacteria from entomopathogenic nematodes (EPNs) collected in Thailand and evaluate their larvicidal properties in controlling A. aegypti and A. albopictus. Colony morphology and recA sequencing of the 118 symbiotic isolated bacteria indicated that most were P. luminescens subsp. akhurstii and X. stockiae with minor prevalence of P. luminescens subsp. hainanensis, P. asymbiotica subsp. australis, X. indica, X. griffiniae, X. japonica, X. thuongxuanensis, and X. eapokensis . The larvicidal bioassay with the third- and fourth-instar mosquito larvae suggested that a whole-cell suspension of X. griffiniae (bMSN3.3_TH) had the highest efficiency in eradicating A. aegypti and A. albopictus, with 90 ± 3.71% and 81 ± 2.13% mortality, respectively, after 96 h exposure. In contrast, 1% of ethyl acetate extracted from X. indica (bSNK8.5_TH) showed reduced mortality for A. aegypti of only 50 ± 3.66% after 96 h exposure. The results indicate that both X. griffiniae (bMSN3.3_TH) and X. indica (bSNK8.5_TH) could be used as biocontrol agents against Aedes larvae.
    Keywords:  Aedes; Biological control; Entomopathogenic bacteria; Larvicidal activity; Phylogeny
  3. Am J Trop Med Hyg. 2022 Aug 29. pii: tpmd210364. [Epub ahead of print]
      Arboviruses transmitted by Aedes aegypti pose a threat to global public health. Because there are no vaccines or drugs available, the prevention of these diseases in Argentina is based on integrated vector control. In this work, the spatiotemporal dynamics of the vector distribution was analyzed by monitoring oviposition. This information allowed the planning of anti-vector interventions and the evaluation of their effect on the relative abundance of mosquito populations in San Ramón de la Nueva Orán. Observed data were compared with the eggs expected via a statistical model based on meteorological variables. The oviposition substrate preference of mosquito females was also evaluated, and the possible relationship between the relative abundance of the vector and sociodemographic and environmental variables (normalized difference vegetation index and normalized difference water index) was explored. A total of 4,193 eggs of Ae. aegypti were collected, and spatial clusters were detected for all months for which the presence of the mosquito was reported. The observed number of eggs was significantly less than the expected-corrected egg abundance. A significant correlation of oviposition activity was found with three sociodemographic variables, whereas no significant correlation was found with mean or median values of the environmental variables studied. This monitoring strategy made it possible to address the interventions and evaluate them, proposing them as good complementary tools for the control of Ae. aegypti in northern Argentina.
  4. Front Bioeng Biotechnol. 2022 ;10 833698
      The pathogen transmitting Aedes albopictus mosquito is spreading rapidly in Europe, putting millions of humans and animals at risk. This species is well-established in Albania since its first detection in 1979. The sterile insect technique (SIT) is increasingly gaining momentum worldwide as a component of area-wide-integrated pest management. However, estimating how the sterile males will perform in the field and the size of target populations is crucial for better decision-making, designing and elaborating appropriate SIT pilot trials, and subsequent large-scale release strategies. A mark-release-recapture (MRR) experiment was carried out in Albania within a highly urbanized area in the city of Tirana. The radio-sterilized adults of Ae. albopictus Albania strain males were transported by plane from Centro Agricoltura Ambiente (CAA) mass-production facility (Bologna, Italy), where they were reared. In Albania, sterile males were sugar-fed, marked with fluorescent powder, and released. The aim of this study was to estimate, under field conditions, their dispersal capacity, probability of daily survival and competitiveness, and the size of the target population. In addition, two adult mosquito collection methods were also evaluated: BG-Sentinel traps baited with BG-Lure and CO2, (BGS) versus human landing catch (HLC). The overall recapture rates did not differ significantly between the two methods (2.36% and 1.57% of the total male released were recaptured respectively by BGS and HLC), suggesting a similar trapping efficiency under these conditions. Sterile males traveled a mean distance of 93.85 ± 42.58 m and dispersed up to 258 m. Moreover, they were observed living in the field up to 15 days after release with an average life expectancy of 4.26 ± 0.80 days. Whether mosquitoes were marked with green, blue, yellow, or pink, released at 3.00 p.m. or 6.00 p.m., there was no significant difference in the recapture, dispersal, and survival rates in the field. The Fried competitiveness index was estimated at 0.28. This mark-release-recapture study provided important data for better decision-making and planning before moving to pilot SIT trials in Albania. Moreover, it also showed that both BG-traps and HLC were successful in monitoring adult mosquitoes and provided similar estimations of the main entomological parameters needed.
    Keywords:  BG sentinel trap; Sterile Insect Technique; competitiveness; dispersal; management; mosquitoes; pest; survival
  5. Afr Health Sci. 2022 Mar;22(1): 521-531
      Background: Dengue is a widely spread mosquito-borne infection in humans, which in recent decades declared is public health problem globally. The dengue virus contains 4 different serotypes (DENV-1, DENV-2, DENV-3, and DENV-4) which belong to the genus Flavivirus.Aims: A descriptive experimental study was conducted to determine the epidemiology, types of Dengue serotypes, clinical features, laboratory probe, and markers for primary diagnosis of dengue virus infection in hospitalized patients.
    Methodology: A total of 691 suspects were diagnosed from August to October 2019 in district Shangla KP, Pakistan. Serological tests were used for nonstructural protein-1 antigen (NS1), and antibodies (immunoglobulin-M (IgM) & Immunoglobulin-G (IgG)) while real-time PCR was used to confirm the cases. The data was statistically analyzed using IBM-SPSS Statistics 20 version.
    Results: The dengue virus infection was more prevalent in the male group (68.09%) than the female group (31.1%). A large number of patients were from rural areas (63.5%) while from urban areas were (36.4%), whereas Besham tehsil was found the most affected compared to other regions. The most prevalent serotype observed in our study was DENV-3 (56.60%) while DENV-4 was the least prevalent serotype (1.88%). Among the age-wise analysis of dengue-virus-infected individuals, the age group of 19-37 years (64.07%) was found the most affected group. The month-wise analysis revealed that the highest number of infections (49.8%) were recorded in September. Significant differences were noticed among blood parameters.
    Conclusion: The possible reasons for the dengue overwhelming in the study area could be less or lack of awareness particularly regarding the transmission of viral infections, improper sewage management, and no effective vector control strategies that lead the dengue outbreaks in the study population.
    Keywords:  DENV; Dengue; Outbreak; Pakistan; RNA Virus; real-time PCR
  6. Arch Virol. 2022 Sep 03.
      To increase our understanding of the diversity of the mosquito virome, 6956 mosquitoes of five species (Culex erraticus, Culex pipiens, Culex restuans, Culex tarsalis, and Culex territans) collected in Iowa in the United States in 2017 and 2020 were assayed for novel viruses by performing polyethylene glycol precipitation, virus isolation in cell culture, and unbiased high-throughput sequencing. A novel virus, provisionally named "Walnut Creek virus", was isolated from Cx. tarsalis, and its genomic sequence and organization are characteristic of viruses in the genus Hapavirus (family Rhabdoviridae). Replication of Walnut Creek virus occurred in avian, mammalian, and mosquito, but not tick, cell lines. A novel virus was also isolated from Cx. restuans, and partial genome sequencing revealed that it is distantly related to an unclassified virus of the genus Phytoreovirus (family Sedoreoviridae). Two recognized viruses were also isolated: Culex Y virus (family Birnaviridae) and Houston virus (family Mesoniviridae). We also identified sequences of eight novel viruses from six families (Amalgaviridae, Birnaviridae, Partitiviridae, Sedoreoviridae, Tombusviridae, and Totiviridae), two viruses that do not belong to any established families, and many previously recognized viruses. In summary, we provide evidence of multiple novel and recognized viruses in Culex spp. mosquitoes in the United States.
  7. BMC Public Health. 2022 Aug 30. 22(1): 1644
      BACKGROUND: Edo State Surveillance Unit observed the emergence of a disease with "no clear-cut-diagnosis", which affected peri-urban Local Government Areas (LGAs) from September 6 to November 1, 2018. On notification, the Nigeria Centre for Disease Control deployed a Rapid Response Team (RRT) to support outbreak investigation and response activities in the State. This study describes the epidemiology of and response to a large yellow fever (YF) outbreak in Edo State.METHODS: A cross-sectional descriptive outbreak investigation of YF outbreak in Edo State. A suspected case of YF was defined as "Any person residing in Edo State with acute onset of fever and jaundice appearing within 14 days of onset of the first symptoms from September 2018 to January 2019". Our response involved active case search in health facilities and communities, retrospective review of patients' records, rapid risk assessment, entomological survey, rapid YF vaccination coverage assessment, blood sample collection, case management and risk communication. Descriptive data analysis using percentages, proportions, frequencies were made.
    RESULTS: A total of 209 suspected cases were line-listed. Sixty-seven (67) confirmed in 12 LGAs with 15 deaths [Case fatality rate (CFR 22.4%)]. Among confirmed cases, median age was 24.8, (range 64 (1-64) years; Fifty-one (76.1%) were males; and only 13 (19.4%) had a history of YF vaccination. Vaccination coverage survey involving 241 children revealed low YF vaccine uptake, with 44.6% providing routine immunisation cards for sighting. Risk of YF transmission was 71.4%. Presence of Aedes with high-larval indices (House Index ≥5% and/or Breteau Index ≥20) were established in all the seven locations visited. YF reactive mass vaccination campaign was implemented.
    CONCLUSION: Edo State is one of the states in Nigeria with the highest burden of yellow fever. More males were affected among the confirmed. Major symptoms include fever, jaundice, weakness, and bleeding. Majority of surveillance performance indicators were above target. There is a high risk of transmission of the disease in the state. Low yellow fever vaccination coverage, and presence of yellow fever vectors (Ae.aegypti, Ae.albopictus and Ae.simpsoni) are responsible for cases in affected communities. Enhanced surveillance, improved laboratory sample management, reactive vaccination campaign, improved yellow fever case management and increased risk communication/awareness are very important mitigation strategies to be sustained in Edo state to prevent further spread and mortality from yellow fever.
    Keywords:  Edo-state; Outbreak; VPD; Yellow fever
  8. MMWR Surveill Summ. 2022 Sep 02. 71(8): 1-35
      PROBLEM/CONDITION: Malaria in humans is caused by intraerythrocytic protozoa of the genus Plasmodium. These parasites are transmitted by the bite of an infective female Anopheles species mosquito. Most malaria infections in the United States and its territories occur among persons who have traveled to regions with ongoing malaria transmission. However, among persons who have not traveled out of the country, malaria is occasionally acquired through exposure to infected blood or tissues, congenital transmission, nosocomial exposure, or local mosquitoborne transmission. Malaria surveillance in the United States and its territories provides information on its occurrence (e.g., temporal, geographic, and demographic), guides prevention and treatment recommendations for travelers and patients, and facilitates rapid transmission control measures if locally acquired cases are identified.PERIOD COVERED: This report summarizes confirmed malaria cases in persons with onset of illness in 2018 and trends in previous years.
    DESCRIPTION OF SYSTEM: Malaria cases diagnosed by blood smear microscopy, polymerase chain reaction, or rapid diagnostic tests are reported to local and state health departments through electronic laboratory reports or by health care providers or laboratory staff members directly reporting to CDC or health departments. Case investigations are conducted by local and state health departments, and reports are transmitted to CDC through the National Malaria Surveillance System (NMSS), the National Notifiable Diseases Surveillance System (NNDSS), or direct CDC clinical consultations. CDC reference laboratories provide diagnostic assistance and conduct antimalarial drug resistance marker testing on blood specimens submitted by health care providers or local or state health departments. This report summarizes data from the integration of all cases from NMSS and NNDSS, CDC clinical consultations, and CDC reference laboratory reports.
    RESULTS: CDC received reports of 1,823 confirmed malaria cases with onset of symptoms in 2018, including one cryptic case and one case acquired through a bone marrow transplant. The number of cases reported in 2018 is 15.6% fewer than in 2017. The number of cases diagnosed in the United States and its territories has been increasing since the mid-1970s; the number of cases reported in 2017 was the highest since 1972. Of the cases in 2018, a total of 1,519 (85.0%) were imported cases that originated from Africa; 1,061 (69.9%) of the cases from Africa were from West Africa, a similar proportion to what was observed in 2017. Among all cases, P. falciparum accounted for most infections (1,273 [69.8%]), followed by P. vivax (173 [9.5%]), P. ovale (95 [5.2%]), and P. malariae (48 [2.6%]). For the first time since 2008, an imported case of P. knowlesi was identified in the United States and its territories. Infections by two or more species accounted for 17 cases (<1.0%). The infecting species was not reported or was undetermined in 216 cases (11.9%). Most patients (92.6%) had symptom onset <90 days after returning to the United States or its territories from a country with malaria transmission. Of the U.S. civilian patients who reported reason for travel, 77.0% were visiting friends and relatives. Chemoprophylaxis with antimalarial medications are recommended for U.S. residents to prevent malaria while traveling in countries where it is endemic. Fewer U.S. residents with imported malaria reported taking any malaria chemoprophylaxis in 2018 (24.5%) than in 2017 (28.4%), and adherence was poor among those who took chemoprophylaxis. Among the 864 U.S. residents with malaria for whom information on chemoprophylaxis use and travel region were known, 95.0% did not adhere to or did not take a CDC-recommended chemoprophylaxis regimen. Among 683 women with malaria, 19 reported being pregnant. Of these, 11 pregnant women were U.S. residents, and one of whom reported taking chemoprophylaxis to prevent malaria but her adherence to chemoprophylaxis was not reported. Thirty-eight (2.1%) malaria cases occurred among U.S. military personnel in 2018, more than in 2017 (26 [1.2%]). Among all reported malaria cases in 2018, a total of 251 (13.8%) were classified as severe malaria illness, and seven persons died from malaria. In 2018, CDC analyzed 106 P. falciparum-positive and four P. falciparum mixed species specimens for antimalarial resistance markers (although certain loci were untestable in some specimens); identification of genetic polymorphisms associated with resistance to pyrimethamine were found in 99 (98.0%), to sulfadoxine in 49 (49.6%), to chloroquine in 50 (45.5%), and to mefloquine in two (2.0%); no specimens tested contained a marker for atovaquone or artemisinin resistance.
    INTERPRETATION: The importation of malaria reflects the overall trends in global travel to and from areas where malaria is endemic, and 15.6% fewer cases were imported in 2018 compared with 2017. Of imported cases, 59.3% were among persons who had traveled from West Africa. Among U.S. civilians, visiting friends and relatives was the most common reason for travel (77.1%).
    PUBLIC HEALTH ACTIONS: The best way for U.S. residents to prevent malaria is to take chemoprophylaxis medication before, during, and after travel to a country where malaria is endemic. Adherence to recommended malaria prevention strategies among U.S. travelers would reduce the number of imported cases. Reported reasons for nonadherence include prematurely stopping after leaving the area where malaria was endemic, forgetting to take the medication, and experiencing a side effect. Health care providers can make travelers aware of the risks posed by malaria and incorporate education to motivate them to be adherent to chemoprophylaxis. Malaria infections can be fatal if not diagnosed and treated promptly with antimalarial medications appropriate for the patient's age, pregnancy status, medical history, the likely country of malaria acquisition, and previous use of antimalarial chemoprophylaxis. Antimalarial use for chemoprophylaxis and treatment should be determined by the CDC guidelines, which are frequently updated. In April 2019, intravenous (IV) artesunate became the first-line medication for treatment of severe malaria in the United States and its territories. Artesunate was approved by the Food and Drug Administration (FDA) in 2020 and is commercially available (Artesunate for Injection) from major U.S. drug distributors ( Stocking IV artesunate locally allows for immediate treatment of severe malaria once diagnosed and provides patients with the best chance of a complete recovery and no sequelae. With commercial IV artesunate now available, CDC will discontinue distribution of non-FDA-approved IV artesunate under an investigational new drug protocol on September 30, 2022. Detailed recommendations for preventing malaria are online at Malaria diagnosis and treatment recommendations are also available online at Health care providers who have sought urgent infectious disease consultation and require additional assistance on diagnosis and treatment of malaria can call the Malaria Hotline 9:00 a.m.-5:00 p.m. Eastern Time, Monday-Friday, at 770-488-7788 or 855-856-4713 or after hours for urgent inquiries at 770-488-7100. Persons submitting malaria case reports (care providers, laboratories, and state and local public health officials) should provide complete information because incomplete reporting compromises case investigations and public health efforts to prevent future infections and examine trends in malaria cases. Molecular surveillance of antimalarial drug resistance markers enables CDC to track, guide treatment, and manage drug resistance in malaria parasites both domestically and globally. A greater proportion of specimens from domestic malaria cases are needed to improve the completeness of antimalarial drug resistance analysis; therefore, CDC requests that blood specimens be submitted for any case of malaria diagnosed in the United States and its territories.