bims-mosdis Biomed News
on Mosquito distribution and disease
Issue of 2022‒05‒01
seven papers selected by
Richard Halfpenny
Staffordshire University


  1. Parasit Vectors. 2022 Apr 27. 15(1): 148
      BACKGROUND: The lack of information on behavioural patterns of Aedes aegypti and Aedes albopictus has become a significant limitation in vector control and disease management programmes. Therefore, the current study was focused on determining some bionomics aspects: breeding, resting, host-seeking and feeding preferences of Ae. aegypti and Ae. albopictus in Sri Lanka.METHODS: Larval and adult surveys were conducted from April 2017 to April 2019 monthly in six selected Medical Officer of Health (MOH) areas in Gampaha Distinct, Western province, Sri Lanka, representing urban, suburban and rural settings. Resting preferences of adult mosquitoes were observed from indoor and outdoor places using a Prockopack aspirator. The information on resting height, surface, material and locality was recorded. Human-baited double-net traps were used to determine the host-seeking time of Aedes mosquitoes. Statistical differences in the spatial distribution of mosquitoes in selected MOH areas and prevalence of vectors were analysed using general linear model (GLM). A chi-square test was used to analyse the resting behaviour.
    RESULTS: Total of 19,835 potential breeding sites were examined at 13,563 premises, and 18.5% (n = 1856) were positive for Aedes larvae. Distribution of Ae. aegypti and Ae. albopictus was statistically significant at species level (df = 1; F = 137.134; P < 0.05 GLM) and study setting (df = 2; F = 8.125; P < 0.05). Aedes aegypti breeding was found mainly in temporary removals (18.8%; n = 34), discarded non-degradables (12.15%; n = 22) and tyres (9.95%; n = 18). Natural (14.7%; n = 246) and temporary removals (13.6%; n = 227) and discarded non-reusable items were the key ovipositing sites for Ae. albopictus. In the adult mosquito survey, the majority was comprised of Ae. albopictus (54.5%; n = 999), which denoted exophilic nature (90.8%; n = 758), and 45.5% (n = 835) represented by Ae. aegypti mosquitoes who were mainly endophilic (84.3%; n = 842). Aedes aegypti rested on cloth hangings and curtains, followed by the furniture, while Aedes albopictus was predominant in outdoor vegetation. In both vectors, biting patterns denoted a typical diurnal pattern with two peaks of host-seeking and biting activity in the morning and afternoon.
    CONCLUSIONS: The majority (80%) of the larval habitats were artificial containers. The use of larvicides for vector control as the prominent measure is questionable since applying these chemicals may target only 20% of the total breeding grounds, which are permanent. The resting places of adult mosquitoes are mainly indoors. Therefore, using thermal space spraying of insecticide may not be appropriate, and indoor residual spraying is recommended as a suitable intervention to target adult mosquitoes. This study warrants a holistic vector control approach for all medically important mosquitoes and insects, ensuring the rational use of finance and resources.
    Keywords:  Aedes aegypti; Aedes albopictus; Dengue; Gampaha; IRS; Resting sites
    DOI:  https://doi.org/10.1186/s13071-022-05261-3
  2. Sci Rep. 2022 Apr 28. 12(1): 6973
      The mosquito Aedes albopictus is an invasive species first detected in Europe in Albania in 1979, and now established in 28 European countries. Temperature is a limiting factor in mosquito activities and in the transmission of associated arboviruses namely chikungunya (CHIKV) and dengue (DENV). Since 2007, local transmissions of CHIKV and DENV have been reported in mainland Europe, mainly in South Europe. Thus, the critical question is how far north transmission could occur. In this context, the Albanian infestation by Ae. albopictus is of interest because the species is present up to 1200 m of altitude; this allows using altitude as a proxy for latitude. Here we show that Ae. albopictus can transmit CHIKV at 28 °C as well as 20 °C, however, the transmission of DENV is only observed at 28 °C. We conclude that if temperature is the key environmental factor limiting transmission, then transmission of CHIKV, but not DENV is feasible in much of Europe.
    DOI:  https://doi.org/10.1038/s41598-022-10977-4
  3. Bull Entomol Res. 2022 Apr 27. 1-19
      A model for the Aedes aegypti lifecycle is developed that takes into account temperature-dependent maturation and death rates for several life stages, wet and dry egg oviposition with flooding, as well as three classes of larval habitat with different temperature profiles: outdoor (subject to external temperature fluctuations, human-inhabited), indoor (temperature moderated, human-inhabited, interior), and enclosed (temperature moderated, human free, exterior). An equilibrium analysis shows that the temperature range of outdoor viable equilibrium populations aligns closely with reported risk levels. Temperature patterns for El Paso, Texas; New York, New York; New Orleans, Louisiana; Orlando, Florida; and Miami, Florida, are considered. In four of these locations (all but New York), enclosed habitats can support mosquito populations even if all outdoor and indoor habitats are removed. In two locations (El Paso and New York) the model shows that in spite of the disappearance of adult mosquitoes during colder temperatures, populations reach seasonal steady state due to the survival of eggs. The results have implications for both vector and disease control.
    Keywords:  Aedes aegypti; population dynamics; vector control
    DOI:  https://doi.org/10.1017/S0007485322000189
  4. J Virol. 2022 Apr 25. e0016522
      Zika virus is a mosquito-borne flavivirus known to cause severe birth defects and neuroimmunological disorders. We have previously demonstrated that mosquito transmission of Zika virus decreases with temperature. While transmission was optimized at 29°C, it was limited at cool temperatures (<22°C) due to poor virus establishment in the mosquitoes. Temperature is one of the strongest drivers of vector-borne disease transmission due to its profound effect on ectothermic mosquito vectors, viruses, and their interaction. Although there is substantial evidence of temperature effects on arbovirus replication and dissemination inside mosquitoes, little is known about whether temperature affects virus replication directly or indirectly through mosquito physiology. In order to determine the mechanisms behind temperature-induced changes in Zika virus transmission potential, we investigated different steps of the virus replication cycle in mosquito cells (C6/36) at optimal (28°C) and cool (20°C) temperatures. We found that the cool temperature did not alter Zika virus entry or translation, but it affected genome replication and reduced the amount of double-stranded RNA replication intermediates. If replication complexes were first formed at 28°C and the cells were subsequently shifted to 20°C, the late steps in the virus replication cycle were efficiently completed. These data suggest that cool temperature decreases the efficiency of Zika virus genome replication in mosquito cells. This phenotype was observed in the Asian lineage of Zika virus, while the African lineage Zika virus was less restricted at 20°C. IMPORTANCE With half of the human population at risk, arboviral diseases represent a substantial global health burden. Zika virus, previously known to cause sporadic infections in humans, emerged in the Americas in 2015 and quickly spread worldwide. There was an urgent need to better understand the disease pathogenesis and develop therapeutics and vaccines, as well as to understand, predict, and control virus transmission. In order to efficiently predict the seasonality and geography for Zika virus transmission, we need a deeper understanding of the host-pathogen interactions and how they can be altered by environmental factors such as temperature. Identifying the step in the virus replication cycle that is inhibited under cool conditions can have implications in modeling the temperature suitability for arbovirus transmission as global environmental patterns change. Understanding the link between pathogen replication and environmental conditions can potentially be exploited to develop new vector control strategies in the future.
    Keywords:  RNA replication; Zika virus; temperature
    DOI:  https://doi.org/10.1128/jvi.00165-22
  5. Front Genet. 2022 ;13 867231
      Genome-wide association studies (GWAS) use genetic polymorphism across the genomes of individuals with distinct characteristics to identify genotype-phenotype associations. In mosquitoes, complex traits such as vector competence and insecticide resistance could benefit from GWAS. We used the Aedes aegypti 50k SNP chip to genotype populations with different levels of pyrethroid resistance from Northern Brazil. Pyrethroids are widely used worldwide to control mosquitoes and agricultural pests, and their intensive use led to the selection of resistance phenotypes in many insects including mosquitoes. For Ae. aegypti, resistance phenotypes are mainly associated with several mutations in the voltage-gated sodium channel, known as knockdown resistance (kdr). We phenotyped those populations with the WHO insecticide bioassay using deltamethrin impregnated papers, genotyped the kdr alleles using qPCR, and determined allele frequencies across the genome using the SNP chip. We identified single-nucleotide polymorphisms (SNPs) directly associated with resistance and one epistatic SNP pair. We also observed that the novel SNPs correlated with the known kdr genotypes, although on different chromosomes or not in close physical proximity to the voltage gated sodium channel gene. In addition, pairwise comparison of resistance and susceptible mosquitoes from each population revealed differentiated genomic regions not associated with pyrethroid resistance. These new bi-allelic markers can be used to genotype other populations along with kdr alleles to understand their worldwide distribution. The functional roles of the genes near the newly discovered SNPs require new studies to determine if they act synergistically with kdr alleles or reduce the fitness cost of maintaining resistant alleles.
    Keywords:  Aedes; GWAS; insecticide resistance; kdr; vgsc gene
    DOI:  https://doi.org/10.3389/fgene.2022.867231
  6. Cold Spring Harb Protoc. 2022 Apr 27.
      Both male and female mosquitoes consume sugar-rich nectar meals required for metabolic energy, but only females consume protein-rich blood meals, which are required for egg development. The size of each meal consumed has subsequent effects on behavior and reproduction; therefore, precise quantification is an important aspect of mosquito feeding behavior studies. This protocol describes a high-throughput, end-point assay to quantify meal volumes ingested by individual mosquitoes. The addition of a fluorescent dye to the meal allows for meal size quantification. Individual mosquitoes that have been fed this meal are homogenized in 96-well plates, and the fluorescence levels are measured with a plate reader. This protocol can also be adapted to determine if alteration of meal composition affects the ingested meal volume, if mosquito strain or genotype dictates consumption, or if meals are derived from multiple sources.
    DOI:  https://doi.org/10.1101/pdb.prot107862
  7. BMC Infect Dis. 2022 Apr 29. 22(1): 418
      BACKGROUND: The re-emergence of yellow fever poses a serious public health risk to unimmunized communities in the tropical regions of Africa and South America and unvaccinated travelers visiting these regions. This risk is further accentuated by the likely spread of the virus to areas with potential for yellow fever transmission such as in Asia, Europe, and North America. To mitigate this risk, surveillance of yellow fever is pivotal. We performed an analysis of laboratory-based surveillance of yellow fever suspected cases in Cameroon during 2010-2020 to characterize the epidemiology of yellow fever cases and define health districts at high risk.METHOD: We reviewed IgM capture ELISA and plaque reduction neutralization test (PRNT) test results of all suspected yellow fever patients analyzed at Centre Pasteur of Cameroon, the national yellow fever testing laboratory, during 2010-2020.
    RESULTS: Of the 20,261 yellow fever suspected patient's samples that were tested, yellow fever IgM antibodies were detected in 360 patients representing an annual average of 33 cases/year. A major increase in YF IgM positive cases was observed in 2015 and in 2016 followed by a decrease in cases to below pre-2015 levels. The majority of the 2015 cases occurred during the latter part of the year while those in 2016, occurred between February and May. This trend may be due to an increase in transmission that began in late 2015 and continued to early 2016 or due to two separate transmission events. In 2016, where the highest number of cases were detected, 60 health districts in the 10 regions of Cameroon were affected with the Littoral, Northwest and, Far North regions being the most affected. After 2016, the number of detected yellow fever IgM positive cases dropped.
    CONCLUSION: Our study shows that yellow fever transmission continues to persist and seems to be occurring all over Cameroon with all 10 regions under surveillance reporting a case. Preventive measures such as mass vaccination campaigns and routine childhood immunizations are urgently needed to increase population immunity. The diagnostic limitations in our analysis highlight the need to strengthen laboratory capacity and improve case investigations.
    Keywords:  Cameroon; Surveillance; Yellow fever; Yellow fever high risk districts; Yellow fever serology
    DOI:  https://doi.org/10.1186/s12879-022-07407-1