bims-mosdis Biomed News
on Mosquito distribution and disease
Issue of 2021‒01‒24
twenty-one papers selected by
Richard Halfpenny
Staffordshire University

  1. PLoS Negl Trop Dis. 2021 Jan 19. 15(1): e0008992
      BACKGROUND: Dengue Fever (DF) is a viral disease primarily transmitted by Aedes (Ae.) aegypti mosquitoes. Outbreaks in Eastern Ethiopia were reported during 2014-2016. In May 2017, we investigated the first suspected DF outbreak from Kabridahar Town, Somali region (Eastern Ethiopia) to describe its magnitude, assess risk factors, and implement control measures.METHODS: Suspected DF cases were defined as acute febrile illness plus ≥2 symptoms (headache, fever, retro-orbital pain, myalgia, arthralgia, rash, or hemorrhage) in Kabridahar District residents. All reported cases were identified through medical record review and active searches. Severe dengue was defined as DF with severe organ impairment, severe hemorrhage, or severe plasma leakage. We conducted a neighborhood-matched case-control study using a subset of suspected cases and conveniently-selected asymptomatic community controls and interviewed participants to collect demographic and risk factor data. We tested sera by RT-PCR to detect dengue virus (DENV) and identify serotypes. Entomologists conducted mosquito surveys at community households to identify species and estimate larval density using the house index (HI), container index (CI) and Breteau index (BI), with BI≥20 indicating high density.
    RESULTS: We identified 101 total cases from May 12-31, 2017, including five with severe dengue (one death). The attack rate (AR) was 17/10,000. Of 21 tested samples, 15 (72%) were DENV serotype 2 (DENV 2). In the case-control study with 50 cases and 100 controls, a lack of formal education (AOR [Adjusted Odds Ratio] = 4.2, 95% CI [Confidence Interval] 1.6-11.2) and open water containers near the home (AOR = 3.0, 95% CI 1.2-7.5) were risk factors, while long-lasting insecticide treated-net (LLITN) usage (AOR = 0.21, 95% CI 0.05-0.79) was protective. HI and BI were 66/136 (49%) and 147 per 100 homes (147%) respectively, with 151/167 (90%) adult mosquitoes identified as Ae. aegypti.
    CONCLUSION: The epidemiologic, entomologic, and laboratory investigation confirmed a DF outbreak. Mosquito indices were far above safe thresholds, indicating inadequate vector control. We recommended improved vector surveillance and control programs, including best practices in preserving water and disposal of open containers to reduce Aedes mosquito density.
  2. Viruses. 2021 Jan 14. pii: E108. [Epub ahead of print]13(1):
      Mosquito-borne arthropod-borne viruses (arboviruses) such as the dengue virus (DENV), Zika virus (ZIKV), and chikungunya virus (CHIKV) are important human pathogens that are responsible for significant global morbidity and mortality. The recent emergence and re-emergence of mosquito-borne viral diseases (MBVDs) highlight the urgent need for safe and effective vaccines, therapeutics, and vector-control approaches to prevent MBVD outbreaks. In nature, arboviruses circulate between vertebrate hosts and arthropod vectors; therefore, disrupting the virus lifecycle in mosquitoes is a major approach for combating MBVDs. Several strategies were proposed to render mosquitoes that are refractory to arboviral infection, for example, those involving the generation of genetically modified mosquitoes or infection with the symbiotic bacterium Wolbachia. Due to the recent development of high-throughput screening methods, an increasing number of drugs with inhibitory effects on mosquito-borne arboviruses in mammalian cells were identified. These antivirals are useful resources that can impede the circulation of arboviruses between arthropods and humans by either rendering viruses more vulnerable in humans or suppressing viral infection by reducing the expression of host factors in mosquitoes. In this review, we summarize recent advances in small-molecule antiarboviral drugs in mammalian and mosquito cells, and discuss how to use these antivirals to block the transmission of MBVDs.
    Keywords:  Aedes aegypti; Zika virus; antiviral drugs; arboviral transmission cycle; dengue virus; mosquito-borne viral diseases; small molecules
  3. Malar J. 2021 Jan 21. 20(1): 54
      BACKGROUND: The need to develop new products and novel approaches for malaria vector control is recognized as a global health priority. One approach to meeting this need has been the development of new products for indoor residual spraying (IRS) with novel active ingredients for public health. While initial results showing the impact of several of these next-generation IRS products have been encouraging, questions remain about how to best deploy them for maximum impact. To help address these questions, a 2-year cluster-randomized controlled trial to measure the impact of IRS with a microencapsulated formulation of pirimiphos-methyl (PM) in an area with high ownership of long-lasting insecticidal nets (LLINs) was conducted in a high-transmission district of central Mozambique with pyrethroid resistant vectors. Presented here are the results of the vector surveillance component of the trial.METHODS: The 2 year, two-armed trial was conducted in Mopeia District, Zambezia Province, Mozambique. In ten sentinel villages, five that received IRS with PM in October-November 2016 and again in October-November 2017 and five that received no IRS, indoor light trap collections and paired indoor-outdoor human landing collections catches (HLCs) were conducted monthly from September 2016 through October 2018. A universal coverage campaign in June 2017, just prior to the second spray round, distributed 131,540 standard alpha-cypermethrin LLINs across all study villages and increased overall net usage rates in children under 5 years old to over 90%.
    RESULTS: The primary malaria vector during the trial was Anopheles funestus sensu lato (s.l.), and standard World Health Organization (WHO) tube tests with this population indicated variable but increasing resistance to pyrethroids (including alpha-cypermethrin, from > 85% mortality in 2017 to 7% mortality in 2018) and uniform susceptibility to PM (100% mortality in both years). Over the entire duration of the study, IRS reduced An. funestus s.l. densities by 48% (CI95 33-59%; p < 0.001) in indoor light traps and by 74% (CI95 38-90%; p = 0.010) during indoor and outdoor HLC, though in each study year reductions in vector density were consistently greatest in those months immediately following the IRS campaigns and waned over time. Overall there was no strong preference for An. funestus to feed indoors or outdoors, and these biting behaviours did not differ significantly across study arms: observed indoor-outdoor biting ratios were 1.10 (CI95 1.00-1.21) in no-IRS villages and 0.88 (CI95 0.67-1.15) in IRS villages. The impact of IRS was consistent in reducing HLC exposures both indoors (75% reduction: CI95 47-88%; p = 0. < 0.001) and outdoors (68% reduction: CI95 22-87%; p = 0.012). While substantially fewer Anopheles gambiae s.l. were collected during the study, trends show a similar impact of IRS on this key vector group as well, with a 33% (CI95 7-53%; p = 0.019) reduction in mosquitoes collected in light traps and a non-statistically significant 39% reduction (p = 0.249) in HLC landing rates.
    CONCLUSION: IRS with PM used in addition to pyrethroid-only LLINs substantially reduced human exposures to malaria vectors during both years of the cluster-randomized controlled trial in Mopeia-a high-burden district where the primary vector, An. funestus s.l., was equally likely to feed indoors or outdoors and demonstrated increasing resistance to pyrethroids. Findings suggest that IRS with PM can provide effective vector control, including in some settings where pyrethroid-only ITNs are widely used. Trial registration , NCT02910934. Registered 22 September 2016,
    Keywords:  3GIRS; An. funestus; Cluster-randomized trial; Indoor residual spraying; Pyrethroid resistance
  4. Parasit Vectors. 2021 Jan 22. 14(1): 75
      BACKGROUND: Mosquito-borne diseases are a global health problem, causing hundreds of thousands of deaths per year. Pathogens are transmitted by mosquitoes feeding on the blood of an infected host and then feeding on a new host. Monitoring mosquito host-choice behaviour can help in many aspects of vector-borne disease control. Currently, it is possible to determine the host species and an individual human host from the blood meal of a mosquito by using genotyping to match the blood profile of local inhabitants. Epidemiological models generally assume that mosquito biting behaviour is random; however, numerous studies have shown that certain characteristics, e.g. genetic makeup and skin microbiota, make some individuals more attractive to mosquitoes than others. Analysing blood meals and illuminating host-choice behaviour will help re-evaluate and optimise disease transmission models.METHODS: We describe a new blood meal assay that identifies the sex of the person that a mosquito has bitten. The amelogenin locus (AMEL), a sex marker located on both X and Y chromosomes, was amplified by polymerase chain reaction in DNA extracted from blood-fed Aedes aegypti and Anopheles coluzzii.
    RESULTS: AMEL could be successfully amplified up to 24 h after a blood meal in 100% of An. coluzzii and 96.6% of Ae. aegypti, revealing the sex of humans that were fed on by individual mosquitoes.
    CONCLUSIONS: The method described here, developed using mosquitoes fed on volunteers, can be applied to field-caught mosquitoes to determine the host species and the biological sex of human hosts on which they have blood fed. Two important vector species were tested successfully in our laboratory experiments, demonstrating the potential of this technique to improve epidemiological models of vector-borne diseases. This viable and low-cost approach has the capacity to improve our understanding of vector-borne disease transmission, specifically gender differences in exposure and attractiveness to mosquitoes. The data gathered from field studies using our method can be used to shape new transmission models and aid in the implementation of more effective and targeted vector control strategies by enabling a better understanding of the drivers of vector-host interactions.
    Keywords:  Blood-feeding behaviour; Epidemiology; Host choice; Mosquitoes; Vector-borne diseases
  5. Malar J. 2021 Jan 18. 20(1): 44
      BACKGROUND: The Cascades region, Burkina Faso, has a high malaria burden despite reported high insecticide-treated mosquito net (ITN) use. Human and vector activities outside the hours when indoor interventions offer direct protection from infectious bites potentially increase exposure risk to bites from malaria-transmitting Anopheles mosquitoes. This work investigated the degree of variation in human behaviour both between individuals and through time (season) to quantify how it impacts exposure to malaria vectors.METHODS: Patterns in human overnight activity (18:00-06:00) to quantify time spent using an ITN across 7 successive nights in two rural communities, Niakore (N = 24 participants) and Toma (71 participants), were observed in the dry and rainy seasons, between 2017 and 2018. Hourly human landing Anopheles mosquito catches were conducted in Niakore specifically, and Cascades region generally, between 2016 and 2017. Data were statistically combined to estimate seasonal variation in time spent outdoors and Anopheles bites received per person per night (bpppn).
    RESULTS: Substantial variability in exposure to outdoor Anopheles bites was detected within and between communities across seasons. In October, when Anopheles densities are highest, an individual's risk of Anopheles bites ranged from 2.2 to 52.2 bites per person per night (bpppn) within the same week with variable risk dependent on hours spent indoors. Comparably higher outdoor human activity was observed in April and July but, due to lower Anopheles densities estimated, bpppn were 0.2-4.7 and 0.5-32.0, respectively. Males and people aged over 21 years were predicted to receive more bites in both sentinel villages.
    CONCLUSION: This work presents one of the first clear descriptions of the degree of heterogeneity in time spent outdoors between people and across the year. Appreciation of sociodemographic, cultural and entomological activities will help refine approaches to vector control.
  6. J Med Entomol. 2021 Jan 18. pii: tjaa292. [Epub ahead of print]
      The dengue viruses (DENVs) occur throughout tropical and subtropical regions of the world where they infect 100s of millions of people annually. In Australia, the dengue receptive zone is confined to the northern state of Queensland where the principal vector Aedes aegypti (L.) is present. In the current study, two populations of Ae. aegypti from north Queensland were exposed to two urban outbreak strains and one sylvatic strain of dengue virus type 2 (DENV-2). The titer of virus required to infect 50% of mosquitoes was between 105 and 106 50% tissue culture infectious dose (TCID)50/ml and was influenced by the combination of the origin of Ae. aegypti population and virus strain. When exposed to infectious bloodmeal titers > 106 TCID50/ml, infection and dissemination rates were all > 50% and were significantly affected by the origin of the mosquito population but not by the strain of DENV-2. Replication of DENV-2 was also significantly affected by the mosquito population and the titer of the infectious bloodmeal that mosquitoes were exposed to. The results of this study are discussed in the context of DENV transmission dynamics in northern Australia and the relative fitness of the sylvatic virus strain in urban Ae. aegypti populations.
    Keywords:   Australian Aedes aegypti ; dengue virus type 2; infection; replication; sylvatic dengue virus
  7. PLoS Negl Trop Dis. 2021 Jan 19. 15(1): e0009005
      BACKGROUND: The integration of house-screening and long-lasting insecticidal nets, known as insecticide-treated screening (ITS), can provide simple, safe, and low-tech Aedes aegypti control. Cluster randomised controlled trials in two endemic localities for Ae. aegypti of south Mexico, showed that ITS conferred both, immediate and sustained (~2 yr) impact on indoor-female Ae. aegypti infestations. Such encouraging results require further validation with studies quantifying more epidemiologically-related endpoints, including arbovirus infection in Ae. aegypti. We evaluated the efficacy of protecting houses with ITS on Ae. aegypti infestation and arbovirus infection during a Zika outbreak in Merida, Yucatan, Mexico.METHODOLOGY/PRINCIPAL FINDINGS: A two-arm cluster-randomised controlled trial evaluated the entomological efficacy of ITS compared to the absence of ITS (with both arms able to receive routine arbovirus vector control) in the neighbourhood Juan Pablo II of Merida. Cross-sectional entomological surveys quantified indoor adult mosquito infestation and arbovirus infection at baseline (pre-ITS installation) and throughout two post-intervention (PI) surveys spaced at 6-month intervals corresponding to dry/rainy seasons over one year (2016-2017). Household-surveys assessed the social reception of the intervention. Houses with ITS were 79-85% less infested with Aedes females than control houses up to one-year PI. A similar significant trend was observed for blood-fed Ae. aegypti females (76-82%). Houses with ITS had significantly less infected female Ae. aegypti than controls during the peak of the epidemic (OR = 0.15, 95%CI: 0.08-0.29), an effect that was significant up to a year PI (OR = 0.24, 0.15-0.39). Communities strongly accepted the intervention, due to its perceived mode of action, the prevalent risk for Aedes-borne diseases in the area, and the positive feedback from neighbours receiving ITS.
    CONCLUSIONS/SIGNIFICANCE: We show evidence of the protective efficacy of ITS against an arboviral disease of major relevance, and discuss the relevance of our findings for intervention adoption.
  8. Parasit Vectors. 2021 Jan 20. 14(1): 64
      BACKGROUND: Semi-field experiments with human landing catch (HLC) measure as the outcome are an important step in the development of novel vector control interventions against outdoor transmission of malaria since they provide good estimates of personal protection. However, it is often infeasible to determine whether the reduction in HLC counts is due to mosquito mortality or repellency, especially considering that spatial repellents based on volatile pyrethroids might induce both. Due to the vastly different impact of repellency and mortality on transmission, the community-level impact of spatial repellents can not be estimated from such semi-field experiments.METHODS: We present a new stochastic model that is able to estimate for any product inhibiting outdoor biting, its repelling effect versus its killing and disarming (preventing host-seeking until the next night) effects, based only on time-stratified HLC data from controlled semi-field experiments. For parameter inference, a Bayesian hierarchical model is used to account for nightly variation of semi-field experimental conditions. We estimate the impact of the products on the vectorial capacity of the given Anopheles species using an existing mathematical model. With this methodology, we analysed data from recent semi-field studies in Kenya and Tanzania on the impact of transfluthrin-treated eave ribbons, the odour-baited Suna trap and their combination (push-pull system) on HLC of Anopheles arabiensis in the peridomestic area.
    RESULTS: Complementing previous analyses of personal protection, we found that the transfluthrin-treated eave ribbons act mainly by killing or disarming mosquitoes. Depending on the actual ratio of disarming versus killing, the vectorial capacity of An. arabiensis is reduced by 41 to 96% at 70% coverage with the transfluthrin-treated eave ribbons and by 38 to 82% at the same coverage with the push-pull system, under the assumption of a similar impact on biting indoors compared to outdoors.
    CONCLUSIONS: The results of this analysis of semi-field data suggest that transfluthrin-treated eave ribbons are a promising tool against malaria transmission by An. arabiensis in the peridomestic area, since they provide both personal and community protection. Our modelling framework can estimate the community-level impact of any tool intervening during the mosquito host-seeking state using data from only semi-field experiments with time-stratified HLC.
    Keywords:  Anopheles arabiensis; Community-level impact; Hierarchical Bayesian model; Malaria; Outdoor transmission; Semi-field experiments; Spatial repellent; Stochastic modelling; Vector control; Volatile pyrethroids
  9. Parasit Vectors. 2021 Jan 18. 14(1): 58
      BACKGROUND: The rapid spread of insecticide resistance in malaria vectors and the rebound in malaria cases observed recently in some endemic areas underscore the urgent need to evaluate and deploy new effective control interventions. A randomized control trial (RCT) was conducted with the aim to investigate the benefit of deploying complementary strategies, including indoor residual spraying (IRS) with pirimiphos-methyl in addition to long-lasting insecticidal nets (LLINs) in Diébougou, southwest Burkina Faso.METHODS: We measured the susceptibility of the Anopheles gambiae (s.l.) population from Diébougou to conventional insecticides. We further monitored the efficacy and residual activity of pirimiphos-methyl on both cement and mud walls using a laboratory susceptible strain (Kisumu) and the local An. gambiae (s.l.) population.
    RESULTS: An. gambiae (s.l.) from Diébougou was resistant to DDT, pyrethroids (deltamethrin, permethrin and alphacypermethrin) and bendiocarb but showed susceptibility to organophosphates (pirimiphos-methyl and chlorpyrimiphos-methyl). A mixed-effect generalized linear model predicted that pirimiphos-methyl applied on cement or mud walls was effective for 210 days against the laboratory susceptible strain and 247 days against the local population. The residual efficacy of pirimiphos-methyl against the local population on walls made of mud was similar to that of cement (OR = 0.792, [0.55-1.12], Tukey's test p-value = 0.19).
    CONCLUSIONS: If data on malaria transmission and malaria cases (as measured trough the RCT) are consistent with data on residual activity of pirimiphos-methyl regardless of the type of wall, one round of IRS with pirimiphos-methyl would have the potential to control malaria in a context of multi-resistant An. gambiae (s.l.) for at least 7 months.
    Keywords:  Burkina Faso; Chemical analysis; IRS; Resistance; Vector control
  10. Curr Trop Med Rep. 2021 Jan 14. 1-9
      Purpose of Review: Malaria poses a threat to nearly half of the world's population, and recent literature in the USA is lacking regarding understanding risk for local outbreaks. This article aims to review Anopheles mosquito data, vector-borne disease outbreak preparedness, and human travel data from large international gateway cities in an effort to examine risk for localized outbreaks.Recent Findings: The majority of vector control organizations are widely unprepared for a vector-borne disease outbreak, and multiple mosquito species capable of transmitting malaria continue to persist throughout the USA.
    Summary: Despite the lack of recent autochthonous cases in the USA, multiple risk factors suggest that local malaria outbreaks in the USA will continue to pose a public health threat due to large numbers of international travelers from endemic areas, multiple Anopheles spp. capable of transmitting the parasite, and unsatisfactory vector-borne disease outbreak preparedness. Climate conditions and recent changes in travel patterns will influence malaria across the globe.
    Keywords:  Locally acquired; Malaria; Plasmodium; Preparedness; USA
  11. BMC Genomics. 2021 Jan 21. 22(1): 71
      BACKGROUND: In the light of dengue being the fastest growing transmissible disease, there is a dire need to identify the mechanisms regulating the behaviour of the main vector Aedes aegypti. Disease transmission requires the female mosquito to acquire the pathogen from a blood meal during one gonotrophic cycle, and to pass it on in the next, and the capacity of the vector to maintain the disease relies on a sustained mosquito population.RESULTS: Using a comprehensive transcriptomic approach, we provide insight into the regulation of the odour-mediated host- and oviposition-seeking behaviours throughout the first gonotrophic cycle. We provide clear evidence that the age and state of the female affects antennal transcription differentially. Notably, the temporal- and state-dependent patterns of differential transcript abundance of chemosensory and neuromodulatory genes extends across families, and appears to be linked to concerted differential modulation by subsets of transcription factors.
    CONCLUSIONS: By identifying these regulatory pathways, we provide a substrate for future studies targeting subsets of genes across disparate families involved in generating key vector behaviours, with the goal to develop novel vector control tools.
    Keywords:  Chemosensory-related genes; Mosquito, Olfaction; Neuromodulatory genes; Ontogeny; Transcription factors
  12. Pathogens. 2021 Jan 18. pii: E80. [Epub ahead of print]10(1):
      Arthropod-borne viral diseases (arboviruses) are a public-health concern in many regions of the world, including Thailand. This review describes the potential vectors and important human and/or veterinary arboviruses in Thailand. The medically important arboviruses affect humans, while veterinary arboviruses affect livestock and the economy. The main vectors described are mosquitoes, but other arthropods have been reported. Important mosquito-borne arboviruses are transmitted mainly by members of the genus Aedes (e.g., dengue, chikungunya, and Zika virus) and Culex (e.g., Japanese encephalitis, Tembusu and West Nile virus). While mosquitoes are important vectors, arboviruses are transmitted via other vectors, such as sand flies, ticks, cimicids (Family Cimicidae) and Culicoides. Veterinary arboviruses are reported in this review, e.g., duck Tembusu virus (DTMUV), Kaeng Khoi virus (KKV), and African horse sickness virus (AHSV). During arbovirus outbreaks, to target control interventions appropriately, it is critical to identify the vector(s) involved and their ecology. Knowledge of the prevalence of these viruses, and the potential for viral infections to co-circulate in mosquitoes, is also important for outbreak prediction.
    Keywords:  Aedes spp.; arboviruses; emerging infectious diseases; vector; veterinary
  13. Parasit Vectors. 2021 Jan 22. 14(1): 76
      BACKGROUND: On 11 March 2020, the World Health Organisation (WHO) declared the coronavirus disease 2019 (COVID-19) outbreak to be a pandemic. As the mosquito season progressed, the understandable concern that mosquitoes could transmit the virus began to increase among the general public and public health organisations. We have investigated the vector competence of Culex pipiens and Aedes albopictus, the two most common species of vector mosquitoes in Europe, for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Due to the very unusual feeding behaviour of Ae. albopictus, we also evaluated the role of this mosquito in a potential mechanical transmission of the virus.METHODS: For the vector competence study, mosquitoes were allowed to take several infectious blood meals. The mosquitoes were then collected and analysed at 0, 3, 7 and 10 days post-feeding. For the mechanical transmission test, Ae. albopictus females were allowed to feed for a short time on a feeder containing infectious blood and then on a feeder containing virus-free blood. Both mosquitoes and blood were tested for viral presence.
    RESULTS: Culex pipiens and Ae. albopictus were found not be competent vectors for SARS-CoV-2, and Ae. albopictus was unable to mechanically transmit the virus.
    CONCLUSIONS: This is the first study to show that the most common species of vector mosquitoes in Europe do not transmit SARS-CoV-2 and that Ae. albopictus is unable to mechanically transmit the virus from a positive host to a healthy host through host-feeding.
    Keywords:  Aedes albopictus; Culex pipiens; Mechanical transmission; SARS-CoV-2; Vector competence
  14. J Med Entomol. 2021 Jan 18. pii: tjaa298. [Epub ahead of print]
      Vector-borne diseases are a worldwide threat to human health. Often, no vaccines or treatments exist. Thus, personal protection products play an essential role in limiting transmission. The World Health Organization (WHO) arm-in-cage (AIC) test is the most common method for evaluating the efficacy of topical repellents, but it remains unclear whether AIC testing conditions recreate the mosquito landing rates in the field. This study aimed to estimate the landing rate outdoors, in an area of Europe highly infested with the Asian tiger mosquito (Aedes albopictus (Skuse, 1894, Diptera: Culididae)), and to determine how to replicate this rate in the laboratory. To assess the landing rate in the field, 16 individuals were exposed to mosquitoes in a highly infested region of Italy. These field results were then compared to results obtained in the laboratory: 1) in a 30 m3 room where nine volunteers were exposed to different mosquito abundances (ranges: 15-20, 25-30, and 45-50) and 2) in a 0.064 m3 AIC test cage where 10 individuals exposed their arms to 200 mosquitoes (as per WHO requirements). The highest mosquito landing rate in the field was 26.8 landings/min. In the room test, a similar landing rate was achieved using 15-20 mosquitoes (density: 0.50-0.66 mosquitoes/m3) and an exposure time of 3 min. In the AIC test using 200 mosquitoes (density: 3,125 mosquitoes/m3), the landing rate was 229 ± 48 landings/min. This study provides useful reference values that can be employed to design new evaluation standards for topical repellents that better simulate field conditions.
    Keywords:   Aedes albopictus ; LRC; arm in cage; field testing; laboratory testing
  15. Syst Rev. 2021 Jan 18. 10(1): 30
      BACKGROUND: Malaria is the most common vector-borne disease transmitted to humans by Anopheles mosquitoes. Endectocides and especially ivermectin will be available as a vector control tool soon. The current review could be valuable for trial design and clinical studies to control malaria transmission.METHODS: PubMed/MEDLINE, Scopus, Web of Science, and Science Direct were searched for original English published papers on ("Malaria chemical control" OR "Malaria elimination" OR "Anopheles vector control" OR "Malaria zooprophylaxis") AND ("Systemic insecticides" OR "Endectocides" OR "Ivermectin"). The last search was from 19 June 2019 to 31 December 2019. It was updated on 17 November 2020. Two reviewers (SG and FGK) independently reviewed abstracts and full-text articles. Data were extracted by one person and checked by another. As meta-analyses were not possible, a qualitative summary of results was performed.
    RESULTS: Thirty-six published papers have used systemic insecticides/endectocides for mosquito control. Most of the studies (56.75%) were done on Anopheles gambiae complex species on doses from 150 μg/kg to 400 μg/kg in several studies. Target hosts for employing systemic insecticides/drugs were animals (44.2%, including rabbit, cattle, pig, and livestock) and humans (32.35%).
    CONCLUSIONS: Laboratory and field studies have highlighted the potential of endectocides in malaria control. Ivermectin and other endectocides could soon serve as novel malaria transmission control tools by reducing the longevity of Anopheles mosquitoes that feed on treated hosts, potentially decreasing Plasmodium parasite transmission when used as mass drug administration (MDA).
    Keywords:  Endectocides; Ivermectin; Malaria elimination; Systemic insecticides
  16. Cochrane Database Syst Rev. 2021 Jan 20. 1 CD013398
      BACKGROUND: Despite being preventable, malaria remains an important public health problem. The World Health Organization (WHO) reports that overall progress in malaria control has plateaued for the first time since the turn of the century. Researchers and policymakers are therefore exploring alternative and supplementary malaria vector control tools. Research in 1900 indicated that modification of houses may be effective in reducing malaria: this is now being revisited, with new research now examining blocking house mosquito entry points or modifying house construction materials to reduce exposure of inhabitants to infectious bites.OBJECTIVES: To assess the effects of house modifications on malaria disease and transmission.
    SEARCH METHODS: We searched the Cochrane Infectious Diseases Group Specialized Register; Central Register of Controlled Trials (CENTRAL), published in the Cochrane Library; MEDLINE (PubMed); Embase (OVID); Centre for Agriculture and Bioscience International (CAB) Abstracts (Web of Science); and the Latin American and Caribbean Health Science Information database (LILACS), up to 1 November 2019. We also searched the WHO International Clinical Trials Registry Platform (, (, and the ISRCTN registry ( to identify ongoing trials up to the same date.
    SELECTION CRITERIA: Randomized controlled trials, including cluster-randomized controlled trials (cRCTs), cross-over studies, and stepped-wedge designs were eligible, as were quasi-experimental trials, including controlled before-and-after studies, controlled interrupted time series, and non-randomized cross-over studies. We only considered studies reporting epidemiological outcomes (malaria case incidence, malaria infection incidence or parasite prevalence). We also summarised qualitative studies conducted alongside included studies.
    DATA COLLECTION AND ANALYSIS: Two review authors selected eligible studies, extracted data, and assessed the risk of bias. We used risk ratios (RR) to compare the effect of the intervention with the control for dichotomous data. For continuous data, we presented the mean difference; and for count and rate data, we used rate ratios. We presented all results with 95% confidence intervals (CIs). We assessed the certainty of evidence using the GRADE approach.
    MAIN RESULTS: Six cRCTs met our inclusion criteria, all conducted in sub-Saharan Africa; three randomized by household, two by village, and one at the community level. All trials assessed screening of windows, doors, eaves, ceilings or any combination of these; this was either alone, or in combination with eave closure, roof modification or eave tube installation (a "lure and kill" device that reduces mosquito entry whilst maintaining some airflow). In two trials, the interventions were insecticide-based. In five trials, the researchers implemented the interventions. The community implemented the interventions in the sixth trial. At the time of writing the review, two of the six trials had published results, both of which compared screened houses (without insecticide) to unscreened houses. One trial in Ethiopia assessed screening of windows and doors. Another trial in the Gambia assessed full screening (screening of eaves, doors and windows), as well as screening of ceilings only. Screening may reduce clinical malaria incidence caused by Plasmodium falciparum (rate ratio 0.38, 95% CI 0.18 to 0.82; 1 trial, 184 participants, 219.3 person-years; low-certainty evidence; Ethiopian study). For malaria parasite prevalence, the point estimate, derived from The Gambia study, was smaller (RR 0.84, 95% CI 0.60 to 1.17; 713 participants, 1 trial; low-certainty evidence), and showed an effect on anaemia (RR 0.61, 95% CI 0.42, 0.89; 705 participants; 1 trial, moderate-certainty evidence). Screening may reduce the entomological inoculation rate (EIR): both trials showed lower estimates in the intervention arm. In the Gambian trial, there was a mean difference in EIR between the control houses and treatment houses ranging from 0.45 to 1.50 (CIs ranged from -0.46 to 2.41; low-certainty evidence), depending on the study year and treatment arm. The Ethiopian trial reported a mean difference in EIR of 4.57, favouring screening (95% CI 3.81 to 5.33; low-certainty evidence). Pooled analysis of the trials showed that individuals living in fully screened houses were slightly less likely to sleep under a bed net (RR 0.84, 95% CI 0.65 to 1.09; 2 trials, 203 participants). In one trial, bed net usage was also lower in individuals living in houses with screened ceilings (RR 0.69, 95% CI 0.50 to 0.95; 1 trial, 135 participants).
    AUTHORS' CONCLUSIONS: Based on the two trials published to date, there is some evidence that screening may reduce malaria transmission and malaria infection in people living in the house. The four trials awaiting publication are likely to enrich the current evidence base, and we will add these to this review when they become available.
  17. PLoS Negl Trop Dis. 2021 Jan 21. 15(1): e0009028
      BACKGROUND: Epidemic arbovirus transmission occurs among humans by mosquito bites and the sylvatic transmission cycles involving non-human primates (NHPs) still exists. However, limited data are available on the extent in NHPs infections and their role. In this study, we have developed and validated a high-throughput serological screening tool to study the circulation of multiple arboviruses that represent a significant threat to human health, in NHPs in Central Africa.METHODOLOGY/PRINCIPAL FINDINGS: Recombinant proteins NS1, envelope domain-3 (DIII) for the dengue (DENV), yellow fever (YFV), usutu (USUV), west nile (WNV) and zika (ZIKV) and envelope 2 for the chikungunya (CHIKV) and o'nyong-nyong (ONNV) were coupled to Luminex beads to detect IgG directed against these viruses. Evaluation of test performance was made using 161 human sera of known arboviral status (66 negative and 95 positive). The sensitivity and specificity of each antigen were determined by statistical methods and ROC curves (except for ONNV and USUV). All NS1 antigens (except NS1-YFV), CHIKV-E2 and WNV-DIII had sensitivities and specificities > 95%. For the other DIII antigens, the sensitivity was low, limiting the interest of their use for seroprevalence studies. Few simultaneous reactions were observed between the CHIKV+ samples and the NS1 antigens to the non-CHIKV arboviruses. On the other hand, the DENV+ samples crossed-reacted with NS1 of all the DENV serotypes (1 to 4), as well as with ZIKV, USUV and to a lesser extent with YFV. A total of 3,518 samples of 29 species of NHPs from Cameroon and the Democratic Republic of Congo (DRC) were tested against NS1 (except YFV), E2 (CHIKV/ONNV) and DIII (WNV) antigens. In monkeys (n = 2,100), the global prevalence varied between 2 and 5% for the ten antigens tested. When we stratified by monkey's biotope, the arboreal species showed the highest reactivity. In monkeys from Cameroon, the highest IgG prevalence were observed against ONNV-E2 and DENV2-NS1 with 3.95% and 3.40% respectively and in DRC, ONNV-E2 (6.63%) and WNV-NS1 (4.42%). Overall prevalence was low in apes (n = 1,418): ranging from 0% for USUV-NS1 to 2.6% for CHIKV-E2. However, a very large disparity was observed among collection site and ape species, e.g. 18% (9/40) and 8.2% (4/49) of gorillas were reactive with CHIKV-E2 or WNV-NS1, respectively in two different sites in Cameroon.
    CONCLUSIONS/SIGNIFICANCE: We have developed a serological assay based on Luminex technology, with high specificity and sensitivity for simultaneous detection of antibodies to 10 antigens from 6 different arboviruses. This is the first study that evaluated on a large scale the presence of antibodies to arboviruses in NHPs to evaluate their role in sylvatic cycles. The overall low prevalence (<5%) in more than 3,500 NHPs samples from Cameroon and the DRC does not allow us to affirm that NHP are reservoirs, but rather, intermediate hosts of these viruses.
  18. J Insect Physiol. 2021 Jan 19. pii: S0022-1910(21)00004-4. [Epub ahead of print] 104194
      Urban light pollution caused by artificial light at night (ALAN) profoundly affects the ecology, behavior, and physiology of plants and animals. Further, this widespread environmental pollutant has the potential to negatively impact human and animal health by changing the seasonal dynamics of disease-transmitting insects. In response to short days, females of the Northern house mosquito enter an overwintering dormancy, or diapause. While in diapause, female mosquitoes divert energy away from reproduction, cease blood-feeding, and no longer transmit disease. We demonstrate that exposure to dim ALAN (∼4 lux) causes female mosquitoes to avert diapause and become reproductively active, as these females acquired less fat content, developed larger egg follicles, imbibed vertebrate blood, and produced viable eggs and larvae. Our findings suggest that mosquitoes in highly light-polluted areas such as cities may be actively reproducing and biting later in the season, thereby extending the period of disease risk for urban residents. Our results suggest that ALAN should be considered when modeling mosquito abundance, disease risk, and when deciding how long mosquito surveillance and control should persist in temperate regions.
    Keywords:  Culex pipiens; Light pollution; Northern house mosquito; diapause; urbanization
  19. Malar J. 2021 Jan 22. 20(1): 60
      BACKGROUND: Although a significant decrease in entomological and epidemiological indicators was reported in Cameroon since the introduction of insecticide-treated bed nets, malaria prevalence remains high also in some parts of the West Region of Cameroon. This study was designed to evaluate malaria preventive measures among patients attending the Bamendjou and Foumbot District hospitals of the West Region of Cameroon.METHODS: This was a cross-sectional study carried out within a period of 3 months, from January to March 2020. Data was obtained using a structured questionnaire and laboratory analysis. The CareStart™ Pf Malaria HRP2 qualitative rapid diagnostic test was used for malaria diagnosis. The questionnaire was designed to collect information on respondent's socio-demographic characteristics, and the use of malaria preventive measures. Data were analysed using descriptive statistics, regression analysis, and Chi-square (and Fisher's exact) test.
    RESULTS: A total of 170 study participants were recruited in Foumbot and 197 in Bamendjou. Malaria was significantly (P < 0.0001) more prevalent in Foumbot (47.06%) than in Bamendjou (19.8%). In Foumbot, non-use of insect repellent spray (P = 0.0214), insect repellent body cream (P = 0.0009), mosquito spray (P = 0.0001) and not draining stagnant water (P = 0.0004) predisposed to higher risk of malaria. In Bamendjou, non-use of insect repellent spray (P = 0.0012), long-lasting insecticidal bed nets (P = 0.0001), window and door nets (P = 0.0286), predisposed to a higher risk of malaria.
    CONCLUSIONS: Malaria prevalence was high among the study participants especially in Foumbot. An adequate follow-up to ensure effective execution of the recently launched third phase of LLINs distribution campaign in Cameroon is recommended. Additionally, integrated vector management is required to ensure effective control of malaria transmission in Foumbot and Bamendjou.
    Keywords:  Insecticidal sprays; Long-lasting insecticidal nets; Malaria; Preventive measures; Risk
  20. Expert Rev Vaccines. 2021 Jan 22.
      INTRODUCTION: Transmission-blocking vaccines (TBV) prevent community spread of malaria by targeting mosquito sexual stage parasites, a life-cycle bottleneck, and will be used in elimination programs. TBV rely on herd immunity to reduce mosquito infections and thereby new infections in both vaccine recipients and non-recipients, but do not provide protection once an individual receives an infectious mosquito bite which complicates clinical development.AREAS COVERED: Here, we describe the concept and biology behind TBV, and we provide an update on clinical development of the leading vaccine candidate antigens. Search terms "malaria vaccine", "sexual stages", "transmission blocking vaccine", "VIMT" and "SSM-VIMT" were used for PubMed queries to identify relevant literature.
    EXPERT OPINION: Candidates targeting P. falciparum zygote surface antigen Pfs25, and its P. vivax orthologue Pvs25, induced functional activity in humans that reduced mosquito infection in surrogate assays, but require increased durability to be useful in the field. Candidates targeting gamete surface antigens Pfs230 and Pfs48/45, respectively, are in or nearing clinical trials. Nanoparticle platforms and adjuvants are being explored to enhance immunogenicity. Efficacy trials require special considerations, such as cluster-randomized designs to measure herd immunity that reduces human and mosquito infection rates, while addressing human and mosquito movements as confounding factors.
    Keywords:   Plasmodium falciparum ; Plasmodium vivax ; cluster-randomized trial; herd immunity; malaria; mosquito; surrogate assay; transmission-blocking vaccine
  21. J Med Entomol. 2021 Jan 20. pii: tjaa277. [Epub ahead of print]
      A new subgenus, Reinertia Somboon, Namgay & Harbach, of the genus Aedes Meigen and its type species, Ae. suffusus Edwards, are described from specimens reared from larvae and pupae found in a tree hole in Bhutan. The scutum of the adults is mostly covered with narrow pale falcate scales. The proboscis, maxillary palpus, tibiae, and tarsi are dark-scaled. The gonocoxite of the male genitalia bears a unique setose basomesal sclerite. The larva closely resembles larvae of the subgenus Downsiomyia Vargus in having setae 4-6-C with numerous branches and inserted more or less on level with seta 7-C, abdominal seta 12-I is present and the comb is composed of 6-10 spine-like scales arranged in an irregular row. Surprisingly, Reinertia shares features of the adult habitus, male genitalia, and larva with the Palearctic subgenus Dahliana Reinert, Harbach & Kitching. However, in phylogenetic analyses of the mitochondrial COI gene of species representing 38 subgenera of Aedes and six other genera of the tribe Aedini Neveu-Lemaire, Reinertia was not associated with Dahliana or Downsiomyia. In both maximum likelihood and Bayesian analyses of the data, Ae. suffusus was recovered as the weakly supported sister of a clade composed of five species of the subgenus Protomacleaya Theobald. In the absence of strong support, and because Protomacleaya is an unnatural group of species that resemble each other phenetically by virtue of what they lack, Ae. suffusus cannot be placed in the subgenus Protomacleaya. Thus, the morphological and molecular data attest the uniqueness of Ae. suffusus and its recognition as a monobasic subgeneric lineage.
    Keywords:   Aedes suffusus ; COI ; Bhutan; mosquito; new subgenus