bims-mosdis Biomed News
on Mosquito distribution and disease
Issue of 2021–01–10
fiveteen papers selected by
Richard Halfpenny, Staffordshire University



  1. Acta Trop. 2021 Jan 02. pii: S0001-706X(20)31733-2. [Epub ahead of print] 105820
      Malaria vector control in Mali relies heavily on the use of long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS) in selected districts. As part of strengthening vector control strategies in Koulikoro district, the National Malaria Control Programme (NMCP) through the support from the US President's Malaria Initiative (PMI) has strategically driven the implementation of IRS, with the LLINs coverage also rising from 93.3% and 98.2%. Due to the increased reports of vector resistance to both pyrethroid and carbamates, there was a campaign for the use of pirimiphos-methyl, an organophosphate at Koulikoro between 2015 and 2016. In this study, the effect of IRS on malaria transmission was assessed, by comparing some key entomological indices between Koulikoro, where IRS was implemented and its neighboring district, Banamba that has never received IRS as vector control intervention. The study was conducted in two villages of each district (Koulikoro and Banamba). Pyrethrum spray catches and entry window trapping were used to collect mosquitoes on a monthly basis. WHO tube tests were carried out to assess mosquito susceptibility to insecticides. Mosquitoes were identified to species level by PCR and their infection to P. falciparum was detected by Enzyme Linked-Immuno-Sorbent Assay (ELISA). Of the 527 specimens identified, An. coluzzii was the most frequent species (95%) followed by An. gambiae (4%) and An. arabiensis (1%). Its density was rainfall dependent in the no-IRS area, and almost independent in the IRS area. The infection rate (IR) in the no-IRS area was 0.96%, while it was null in the IRS area. In the no-IRS area, the entomological inoculation rate (EIR) was 0.21 infective bites /person month with a peak in September. High resistance to pyrethroids and carbamates and susceptibility to organophosphates was observed at all sites. The introduction of pirimiphos-methyl based IRS for vector control resulted in a significant decrease in malaria transmission. An. gambiae s.l., the main malaria vector in the area, was resistant to pyrethroids and carbamates but remained susceptible to the organophosphate pirimiphos-methyl.
    Keywords:  Entomological inoculation rate; Infection rate; Insecticide resistance; Transmission
    DOI:  https://doi.org/10.1016/j.actatropica.2020.105820
  2. One Health. 2020 Dec 20. 11 100188
      As the threat of arboviral diseases continues to escalate worldwide, the question of, "What types of human communities are at the greatest risk of infection?" persists as a key gap in the existing knowledge of arboviral diseases transmission dynamics. Here, we comprehensively review the existing literature on the socioeconomic drivers of the most common Aedes mosquito-borne diseases and Aedes mosquito presence/abundance. We reviewed a total of 182 studies on dengue viruses (DENV), chikungunya virus (CHIKV), yellow fever virus (YFVV), Zika virus (ZIKV), and presence of Aedes mosquito vectors. In general, associations between socioeconomic conditions and both Aedes-borne diseases and Aedes mosquitoes are highly variable and often location-specific. Although 50% to 60% of studies found greater presence or prevalence of disease or vectors in areas with lower socioeconomic status, approximately half of the remaining studies found either positive or null associations. We discuss the possible causes of this lack of conclusiveness as well as the implications it holds for future research and prevention efforts.
    Keywords:  Aedes-borne diseases; Chikungunya; Dengue fever; Global health; Yellow fever; Zika virus
    DOI:  https://doi.org/10.1016/j.onehlt.2020.100188
  3. Nat Commun. 2021 Jan 08. 12(1): 151
      Mosquito-borne viruses threaten the Caribbean due to the region's tropical climate and seasonal reception of international tourists. Outbreaks of chikungunya and Zika have demonstrated the rapidity with which these viruses can spread. Concurrently, dengue fever cases have climbed over the past decade. Sustainable disease control measures are urgently needed to quell virus transmission and prevent future outbreaks. Here, to improve upon current control methods, we analyze temporal and spatial patterns of chikungunya, Zika, and dengue outbreaks reported in the Dominican Republic between 2012 and 2018. The viruses that cause these outbreaks are transmitted by Aedes mosquitoes, which are sensitive to seasonal climatological variability. We evaluate whether climate and the spatio-temporal dynamics of dengue outbreaks could explain patterns of emerging disease outbreaks. We find that emerging disease outbreaks were robust to the climatological and spatio-temporal constraints defining seasonal dengue outbreak dynamics, indicating that constant surveillance is required to prevent future health crises.
    DOI:  https://doi.org/10.1038/s41467-020-20391-x
  4. Acta Trop. 2021 Jan 03. pii: S0001-706X(20)31732-0. [Epub ahead of print] 105819
      The outbreaks caused by the Aedes aegypti-transmitted dengue virus (DENV), zika virus (ZIKV), and chikungunya virus (CHIKV) result in a significant impact to the health systems of tropical countries. Furthermore, the occurrence of patients coinfected by at least two of these arboviruses is an aggravating factor in that scenario. On this basis, surveillance tools such as the Rapid Index Survey for Aedes aegypti (LIRAa) are used to estimate vector infestation in order to improve the prediction of human outbreaks. Ae. aegypti eggs were collected in the city of Vitória da Conquista, in Bahia State, Brazil, and subsequently hatched into larvae, which were analyzed in pools or individually for the presence of DENV, ZIKV, and CHIKV by molecular biology methods. The detection data for arboviruses were crossed with the LIRAa obtained in each region of the study city. Thirty larvae pools were analyzed, and fourteen (46.6%) of them were detected positive for DENV, ZIKV, and/or CHIKV. Among the individually analyzed larvae (n=30), nine (30%) were positive for any of these arboviruses, and four (13.3%) were simultaneously coinfected by DENV and ZIKV. Furthermore, there was a positive correlation between the detection of circulating arboviruses and LIRAa. The simultaneous Ae. aegypti larvae infection by two different arboviruses is an unprecedented finding. This result suggests the occurrence of a vertical arboviruses co-transmission from the female mosquito to its offspring in nature. The occurrence of concomitant circulation of DENV, ZIKV, and CHIKV in Ae. aegypti from a single study region is another finding of this article. Finally, LIRAa seems to not only estimate vector infestation but also to predict circulation of arboviruses.
    Keywords:  Chikungunya; Cotransmission; Dengue; Vertical transmission; Zika
    DOI:  https://doi.org/10.1016/j.actatropica.2020.105819
  5. Parasit Vectors. 2021 Jan 02. 14(1): 2
       BACKGROUND: In Mvoua, a village situated in a forested area of Cameroon, recent studies have reported high prevalence of Plasmodium falciparum infection among the population. In order to understand factors that can sustain such a high malaria transmission, we investigated the biology of Anopheles vectors and its susceptibility to insecticides, as well as long-lasting insecticidal net (LLIN) coverage, use and bio-efficacy.
    METHODS: A longitudinal entomological survey was conducted from July 2018 to April 2019. Adult mosquitoes were collected using the human landing catch (HLC) method and identified using morphological and molecular techniques. Anopheles gambiae (s.l.) larvae were sampled from several stagnant water pools throughout the village and reared to generate F1 adults. The presence of P. falciparum circumsporozoite antigen was detected in the heads and thoraces of mosquitoes collected as adults using an enzyme-linked immunosorbent assay. The insecticide susceptibility status of the local An. gambiae (s.l.) F1 population to the pyrethroid insecticides deltamethrin 0.5% and permethrin 0.75% was determined using World Health Organization-tube bioassays, while the frequency of the knockdown resistance (kdr) mutation was determined by PCR. Coverage, use and physical integrity of LLINs were assessed in households, then cone assays were used to test for their bio-efficacy on both the reference insecticide-susceptible Kisumu strain and on field F1 An. gambiae (s.l.) RESULTS: In total, 110 Anopheles mosquitoes were collected, of which 59.1% were identified as Anopheles funestus (s.l.), 38.18% as An. gambiae (s.l.) and 2.72% as An. ziemanii. Anopheles funestus was the most abundant species except in the long rainy season, when An. gambiae (s.l.) predominated (65.8%). In the dry seasons, vectors were principally endophagous (76% of those collected indoors) while they tended to be exophagous (66% of those collected outdoors) in rainy seasons. High Plasmodium infection was observed in An. gambiae (s.l.) and An. funestus, with a circumsporozoitic rate of 14.29 and 10.77%, respectively. Anopheles gambiae (s.l.) was highly resistant to pyrethroid insecticides (mortality rates: 32% for permethrin and 5% for deltamethrin) and harbored the kdr-L1014F mutation at a high frequency (89.74%). Of the 80 households surveyed, only 47.69% had achieved universal coverage with LLNs. Around 70% of the LLINs sampled were in poor physical condition, with a proportionate hole index > 300. Of the ten LLNs tested, eight were effective against the An. gambiae reference insecticide-susceptible Kisumu strain, showing mortality rate of > 80%, while none of these LLINs were efficient against local An. gamabie (s.l.) populations (mortality rates < 11.5%).
    CONCLUSION: A combination of elevated P. falciparum infection in Anopheles vector populations, insufficient coverage and loss of effectiveness of LLINs due to physical degradation, as well as high resistance to pyrethroid insecticides is responsible for the persistence of high malaria transmission in forested rural area of Mvoua, Cameroon.
    Keywords:  Anopheles; Insecticide resistance; Long lasting insecticide treated net; Malaria prevalence; Mvoua
    DOI:  https://doi.org/10.1186/s13071-020-04525-0
  6. Parasitol Res. 2021 Jan 06.
      Fundamentally, larviciding with pyriproxyfen (PPF) has potential to complement Long Lasting Insecticide Nets (LLINs) and indoor residual sprays (IRS) in settings where resistance to pyrethroids and residual malaria transmission exist. In this study, we evaluated the field effectiveness of larviciding using PPF to reduce dry season productivity of mosquito breeding habitats that were located by pastoralists within the study area. Using pastoralist knowledge, dry season breeding habitats in Mofu village rural Tanzania were located and monitored for larval productivity for a period of 8 months before PPF intervention. During the intervention, six out of twelve breeding habitats were treated with Sumilarv 0.5G PPF granules. The impact of deposited PPF was monitored by recording emergence inhibition of larvae collected from treated habitats compared to the appropriate control group for a period of three months and half post-intervention. During baseline, the average proportion (+SD) of adult emerged was similar between two clusters, with (0.89 + 0.22) for the control cluster and (0.93 + 0.16) for the treatment cluster of breeding habitats. Following treatment with PPF, the average proportion (+SD) of adult emerged in the treated breeding habitats was significantly low (0.096 + 0.22) compared to adults that emerged from larvae in the untreated habitats (0.99 + 0.22) (p < 0.0001). Of all emerged adults, approximately 94% were An. gambiae s.l. and the remaining 6% were An. funestus s.l. This is the first study demonstrating the usefulness of engaging pastoralist community to locate and identify hard to find mosquito breeding habitats. Reduced productivity of the targeted habitats with PPF offers prospect of implementing PPF larviciding in dry season when habitats are few and permanent to control mosquito population in rural settings.
    Keywords:  Dry-seasons; Larviciding; Malaria vectors; Pastoralists; Pyriproxyfen; Rural Tanzania
    DOI:  https://doi.org/10.1007/s00436-020-07040-4
  7. PLoS Negl Trop Dis. 2021 Jan;15(1): e0008972
      Arbovirus infection in Aedes aegypti has historically been quantified from a sample of the adult population by pooling collected mosquitoes to increase detectability. However, there is a significant knowledge gap about the magnitude of natural arbovirus infection within areas of active transmission, as well as the sensitivity of detection of such an approach. We used indoor Ae. aegypti sequential sampling with Prokopack aspirators to collect all mosquitoes inside 200 houses with suspected active ABV transmission from the city of Mérida, Mexico, and tested all collected specimens by RT-PCR to quantify: a) the absolute arbovirus infection rate in individually tested Ae. aegypti females; b) the sensitivity of using Prokopack aspirators in detecting ABV-infected mosquitoes; and c) the sensitivity of entomological inoculation rate (EIR) and vectorial capacity (VC), two measures ABV transmission potential, to different estimates of indoor Ae. aegypti abundance. The total number of Ae. aegypti (total catch, the sum of all Ae. aegypti across all collection intervals) as well as the number on the first 10-min of collection (sample, equivalent to a routine adult aspiration session) were calculated. We individually tested by RT-PCR 2,161 Aedes aegypti females and found that 7.7% of them were positive to any ABV. Most infections were CHIKV (77.7%), followed by DENV (11.4%) and ZIKV (9.0%). The distribution of infected Aedes aegypti was overdispersed; 33% houses contributed 81% of the infected mosquitoes. A significant association between ABV infection and Ae. aegypti total catch indoors was found (binomial GLMM, Odds Ratio > 1). A 10-min indoor Prokopack collection led to a low sensitivity of detecting ABV infection (16.3% for detecting infected mosquitoes and 23.4% for detecting infected houses). When averaged across all infested houses, mean EIR ranged between 0.04 and 0.06 infective bites per person per day, and mean VC was 0.6 infectious vectors generated from a population feeding on a single infected host per house/day. Both measures were significantly and positively associated with Ae. aegypti total catch indoors. Our findings provide evidence that the accurate estimation and quantification of arbovirus infection rate and transmission risk is a function of the sampling effort, the local abundance of Aedes aegypti and the intensity of arbovirus circulation.
    DOI:  https://doi.org/10.1371/journal.pntd.0008972
  8. Trans R Soc Trop Med Hyg. 2021 Jan 07. pii: traa158. [Epub ahead of print]
      Dengue poses a significant health and economic burden in the WHO South-East Asia Region. Approaches for control need to be aligned with current knowledge on the epidemiology of dengue in the region. Such knowledge will ensure improved targeting of interventions to reduce dengue incidence and its socioeconomic impact. This review was undertaken to describe the contemporary epidemiology of dengue and critically analyse the existing surveillance strategies in the region. Over recent decades, dengue incidence has continued to increase with geographical expansion. The region has now become hyper-endemic for multiple dengue virus serotypes/genotypes. Every epidemic cycle was associated with a change of predominant serotype/genotype and this was often associated with severe disease with intense transmission. Classical larval indices are widely used in vector surveillance and adult mosquito samplings are not implemented as a part of routine surveillance. Further, there is a lack of integration of entomological and disease surveillance systems, often leading to inaction or delays in dengue prevention and control. Disease surveillance does not capture all cases, resulting in under-reporting, and has thus failed to adequately represent the true burden of disease in the region. Possible solutions include incorporating adult mosquito sampling into routine vector surveillance, the establishment of laboratory-based sentinel surveillance, integrated vector and dengue disease surveillance and climate-based early warning systems using available technologies like mobile apps.
    Keywords:  WHO-SEAR; dengue emergence; dengue virus; early detection; epidemiology; surveillance
    DOI:  https://doi.org/10.1093/trstmh/traa158
  9. Parasit Vectors. 2021 Jan 06. 14(1): 17
       BACKGROUND: The sibling species of the malaria mosquito, Anopheles gambiae (sensu stricto) and Anopheles coluzzii co-exist in many parts of West Africa and are thought to have recently diverged through a process of ecological speciation with gene flow. Divergent larval ecological adaptations, resulting in Genotype-by-Environment (G × E) interactions, have been proposed as important drivers of speciation in these species. In West Africa, An. coluzzii tends to be associated with permanent man-made larval habitats such as irrigated rice fields, which are typically more eutrophic and mineral and ammonia-rich than the temporary rain pools exploited by An. gambiae (s.s.) METHODS: To highlight G × E interactions at the larval stage and their possible role in ecological speciation of these species, we first investigated the effect of exposure to ammonium hydroxide and water mineralisation on larval developmental success. Mosquito larvae were exposed to two water sources and increasing ammonia concentrations in small containers until adult emergence. In a second experiment, larval developmental success was compared across two contrasted microcosms to highlight G × E interactions under conditions such as those found in the natural environment.
    RESULTS: The first experiment revealed significant G × E interactions in developmental success and phenotypic quality for both species in response to increasing ammonia concentrations and water mineralisation. The An. coluzzii strain outperformed the An. gambiae (s.s.) strain under limited conditions that were closer to more eutrophic habitats. The second experiment revealed divergent crisscrossing reaction norms in the developmental success of the sibling species in the two contrasted larval environments. As expected, An. coluzzii had higher emergence rates in the rice paddy environment with emerging adults of superior phenotypic quality compared to An. gambiae (s.s.), and vice versa, in the rain puddle environment.
    CONCLUSIONS: Evidence for such G × E interactions lends support to the hypothesis that divergent larval adaptations to the environmental conditions found in man-made habitats such as rice fields in An. coluzzii may have been an important driver of its ecological speciation.
    Keywords:  Ammonia tolerance; Anopheles coluzzii; Anopheles gambiae; Eco-speciation; G × E interactions; Malaria; Mineral water; Rice fields
    DOI:  https://doi.org/10.1186/s13071-020-04483-7
  10. J Gen Virol. 2021 Jan 08.
      The genus Flavivirus includes a range of mosquito-specific viruses in addition to well-known medically important arboviruses. Isolation and comprehensive genomic analyses of viruses in mosquitoes collected in Bolivia resulted in the identification of three novel flavivirus species. Psorophora flavivirus (PSFV) was isolated from Psorophora albigenu. The coding sequence of the PSFV polyprotein shares 60 % identity with that of the Aedes-associated lineage II insect-specific flavivirus (ISF), Marisma virus. Isolated PSFV replicates in both Aedes albopictus- and Aedes aegypti-derived cells, but not in mammalian Vero or BHK-21 cell lines. Two other flaviviruses, Ochlerotatus scapularis flavivirus (OSFV) and Mansonia flavivirus (MAFV), which were identified from Ochlerotatus scapularis and Mansonia titillans, respectively, group with the classical lineage I ISFs. The protein coding sequences of these viruses share only 60 and 40 % identity with the most closely related of known lineage I ISFs, including Xishuangbanna aedes flavivirus and Sabethes flavivirus, respectively. Phylogenetic analysis suggests that MAFV is clearly distinct from the groups of the current known Culicinae-associated lineage I ISFs. Interestingly, the predicted amino acid sequence of the MAFV capsid protein is approximately two times longer than that of any of the other known flaviviruses. Our results indicate that flaviviruses with distinct features can be found at the edge of the Bolivian Amazon basin at sites that are also home to dense populations of human-biting mosquitoes.
    Keywords:  Amazon; Bolivia; Flavivirus; insect-specific flavivirus; mosquito
    DOI:  https://doi.org/10.1099/jgv.0.001518
  11. J Med Entomol. 2021 Jan 09. pii: tjaa278. [Epub ahead of print]
      Malaria is a leading public health challenge causing mortality and morbidity in sub-Saharan Africa. Prominent malaria vector control methods employed in sub-Saharan Africa include Long Lasting Insecticide Nets (LLINs) and Indoor Residual spraying (IRS). This study investigated knowledge, attitude and practices (KAP) of malaria vector control methods in Lagos, South-West Nigeria. Structured questionnaires were employed for the cross-sectional survey which was carried out between May and August 2018. Multi-stage sampling technique was used to select Lagos Mainland, Kosofe, and Ojo local government areas (LGAs). Five hundred and twenty questionnaires were used for the study. Data were analyzed for descriptive statistics, whereas χ 2 was used to determine influence of respondents' LGA, level of education and type of dwelling on respondents' attitude and practice. Respondents' LGAs have no significant impact on attitude and practice to malaria vector control methods. However, 'level of education' as well as 'type of dwelling structure' impacted significantly on some practices and attitude. Basically, IRS is the major tool employed in malaria vector control, but sometimes it is used in combination with other methods. A good number of residents also use LLINs. 'Choice of method' employed is mainly based on the effectiveness of method. General perception about LLINs and IRS is that they are effective, cheap and safer. Considering the widespread use of IRS and LLINs for malaria vector control in Lagos, implementation of malaria control programs should consider KAP to these two strategies.
    Keywords:  attitude; control; knowledge; malaria; practices
    DOI:  https://doi.org/10.1093/jme/tjaa278
  12. Korean J Parasitol. 2020 Dec;58(6): 709-714
      Knockdown resistance (kdr) mutations in the voltage-gated sodium channel (VGSC) of mosquitoes confer resistance to insecticides. Although insecticide resistance has been suspected to be widespread in the natural population of Aedes aegypti in Myanmar, only limited information is currently available. The overall prevalence and distribution of kdr mutations was analyzed in Ae. aegypti from Mandalay areas, Myanmar. Sequence analysis of the VGSC in Ae. aegypti from Myanmar revealed amino acid mutations at 13 and 11 positions in domains II and III of VGSC, respectively. High frequencies of S989P (68.6%), V1016G (73.5%), and F1534C (40.1%) were found in domains II and III. T1520I was also found, but the frequency was low (8.1%). The frequency of S989P/V1016G was high (55.0%), and the frequencies of V1016G/F1534C and S989P/V1016G/F1534C were also high at 30.1% and 23.5%, respectively. Novel mutations in domain II (L963Q, M976I, V977A, M994T, L995F, V996M/A, D998N, V999A, N1013D, and F1020S) and domain III (K1514R, Y1523H, V1529A, F1534L, F1537S, V1546A, F1551S, G1581D, and K1584R) were also identified. These results collectively suggest that high frequencies of kdr mutations were identified in Myanmar Ae. aegypti, indicating a high level of insecticide resistance.
    Keywords:   knockdown resistance; Aedes aegypti; Myanmar; voltage-gated sodium channel
    DOI:  https://doi.org/10.3347/kjp.2020.58.6.709
  13. Trends Parasitol. 2021 Jan 05. pii: S1471-4922(20)30325-1. [Epub ahead of print]
      Blood-sucking insects are important vectors of disease, with biting Diptera (flies) alone transmitting diseases that cause an estimated 700 000 human deaths a year. Insect vectors also bite nonhuman hosts, linking them into host-biting networks. While the major vectors of prominent diseases, such as malaria, yellow fever, dengue, and Zika, are intensively studied, there has been limited focus on the wider interactions of biting insects with nonhuman hosts. Drawing on network analysis and visualisation approaches from food-web ecology, we discuss the value of a network perspective for understanding host-insect-disease interactions, with a focus on Diptera vectors. Potential applications include highlighting pathways of disease transmission, highlighting reservoirs of infection, and identifying emerging and previously unrecognised vectors.
    Keywords:  biting Diptera; interaction network; vector-borne disease; zoonoses
    DOI:  https://doi.org/10.1016/j.pt.2020.12.001
  14. Malar J. 2021 Jan 06. 20(1): 20
      The COVID-19 pandemic has resulted in massive global disruptions with considerable impact on the delivery of health services and national health programmes. Since the detection of the first COVID-19 case on 5th March 2020, the Royal Government of Bhutan implemented a number of containment measures including border closure and national lockdowns. Against the backdrop of this global COVID-19 pandemic response, there was a sudden surge of locally-transmitted malaria cases between June to August 2020. There were 20 indigenous cases (zero Plasmodium falciparum and 20 Plasmodium vivax) from a total of 49 cases (seven P. falciparum and 42 P. vivax) in 2020 compared to just two from a total of 42 in 2019. Over 80% of the cases were clustered in malaria endemic district of Sarpang. This spike of malaria cases was attributed to the delay in the delivery of routine malaria preventive interventions due to the COVID-19 pandemic. As a result, Bhutan is unlikely to achieve the national goal of malaria elimination by 2020.
    DOI:  https://doi.org/10.1186/s12936-020-03562-5
  15. PLoS Negl Trop Dis. 2021 Jan;15(1): e0009022
      West Nile virus is a widely spread arthropod-born virus, which has mosquitoes as vectors and birds as reservoirs. Humans, as dead-end hosts of the virus, may suffer West Nile Fever (WNF), which sometimes leads to death. In Europe, the first large-scale epidemic of WNF occurred in 1996 in Romania. Since then, human cases have increased in the continent, where the highest number of cases occurred in 2018. Using the location of WNF cases in 2017 and favorability models, we developed two risk models, one environmental and the other spatio-environmental, and tested their capacity to predict in 2018: 1) the location of WNF; 2) the intensity of the outbreaks (i.e. the number of confirmed human cases); and 3) the imminence of the cases (i.e. the Julian week in which the first case occurred). We found that climatic variables (the maximum temperature of the warmest month and the annual temperature range), human-related variables (rain-fed agriculture, the density of poultry and horses), and topo-hydrographic variables (the presence of rivers and altitude) were the best environmental predictors of WNF outbreaks in Europe. The spatio-environmental model was the most useful in predicting the location of WNF outbreaks, which suggests that a spatial structure, probably related to bird migration routes, has a role in the geographical pattern of WNF in Europe. Both the intensity of cases and their imminence were best predicted using the environmental model, suggesting that these features of the disease are linked to the environmental characteristics of the areas. We highlight the relevance of river basins in the propagation dynamics of the disease, as outbreaks started in the lower parts of the river basins, from where WNF spread towards the upper parts. Therefore, river basins should be considered as operational geographic units for the public health management of the disease.
    DOI:  https://doi.org/10.1371/journal.pntd.0009022