bims-mosdis Biomed News
on Mosquito distribution and disease
Issue of 2021‒01‒03
twelve papers selected by
Richard Halfpenny
Staffordshire University


  1. PLoS Pathog. 2020 Dec;16(12): e1009068
      Originating from African forests, Zika virus (ZIKV) has now emerged worldwide in urbanized areas, mainly transmitted by Aedes aegypti mosquitoes. Although Aedes albopictus can transmit ZIKV experimentally and was suspected to be a ZIKV vector in Central Africa, the potential of this species to sustain virus transmission was yet to be uncovered until the end of 2019, when several autochthonous transmissions of the virus vectored by Ae. albopictus occurred in France. Aside from these few locally acquired ZIKV infections, most territories colonized by Ae. albopictus have been spared so far. The risk level of ZIKV emergence in these areas remains however an open question. To assess Ae. albopictus' vector potential for ZIKV and identify key virus outbreak predictors, we built a complete framework using the complementary combination of (i) dose-dependent experimental Ae. albopictus exposure to ZIKV followed by time-dependent assessment of infection and systemic infection rates, (ii) modeling of intra-human ZIKV viremia dynamics, and (iii) in silico epidemiological simulations using an Agent-Based Model. The highest risk of transmission occurred during the pre-symptomatic stage of the disease, at the peak of viremia. At this dose, mosquito infection probability was estimated to be 20%, and 21 days were required to reach the median systemic infection rates. Mosquito population origin, either temperate or tropical, had no impact on infection rates or intra-host virus dynamic. Despite these unfavorable characteristics for transmission, Ae. albopictus was still able to trigger and yield large outbreaks in a simulated environment in the presence of sufficiently high mosquito biting rates. Our results reveal a low but existing epidemic potential of Ae. albopictus for ZIKV, that might explain the absence of large scale ZIKV epidemics so far in territories occupied only by Ae. albopictus. They nevertheless support active surveillance and eradication programs in these territories to maintain the risk of emergence to a low level.
    DOI:  https://doi.org/10.1371/journal.ppat.1009068
  2. Am J Trop Med Hyg. 2020 Dec 21.
      The Asian tiger mosquito (Aedes albopictus) is an important vector of a number of arboviruses, including Zika (ZIKV), dengue (DENV), and chikungunya (CHIKV) viruses, and has recently expanded its range in the eastern United States to southern New England and New York. Given the recent establishment and proliferation of Ae. albopictus in this region and the increasing amount of international travel between the United States and endemic countries, there is a need to elucidate the public health risk posed by this mosquito species in the Northeast. Accordingly, we evaluated the competence of four Ae. albopictus populations from Connecticut and New York, for two strains each of ZIKV, DENV serotype 2 (DENV-2), and CHIKV, currently circulating in the Americas, to evaluate the local transmission risk by this vector. We found that local Ae. albopictus populations are susceptible to infection by all three viruses but are most capable of transmitting CHIKV. Variation in competence was observed for ZIKV and CHIKV, driven by the virus strains and mosquito population, whereas competence was more homogeneous for the DENV-2 strains under evaluation. These results suggest that under optimal circumstances, Ae. albopictus could support localized transmission of these viruses and emphasize the importance of maintaining mosquito surveillance and control programs to suppress Ae. albopictus populations and limit further range expansion of this species.
    DOI:  https://doi.org/10.4269/ajtmh.20-0874
  3. Gac Med Mex. 2020 ;156(5): 382-389
      Introduction: Mexico City has no endemic presence of Aedes aegypti, and it is therefore free of vector-borne diseases, such as dengue fever, Zika and chikungunya. However, evidence has shown the presence of Aedes aegypti eggs in the city since 2015.Objective: To report the constant and increasing presence of Aedes aegypti eggs in Mexico City from 2015 to 2018.
    Methods: Surveillance was carried out using ovitraps. Eggs were counted and hatched in order to determine the species.
    Results: From 2015 to 2018, 378 organisms were identified as Ae. aegypti. In total, 76 Aedes aegypti-positive ovitraps were collected at 50 different places in 11 boroughs of the city. Northeastern Mexico City was the area with the highest number of positive traps.
    Conclusions: The results may be indicating a period of early colonization and the probable existence of cryptic colonies of the mosquito; Mexico City could be at risk of experiencing vector-borne epidemics.
    Keywords:  Aedes aegypti; Ciudad de México; Enfermedades transmitidas por vector; Mexico City; Mosquitoes Entomological surveillance; Mosquitos; Vector-borne diseases; Vigilancia entomológica
    DOI:  https://doi.org/10.24875/GMM.M20000425
  4. Parasit Vectors. 2020 Dec 30. 13(1): 625
      BACKGROUND: Usutu virus (USUV) is a rapidly spreading zoonotic arbovirus (arthropod-borne virus) and a considerable threat to the global avifauna and in isolated cases to human health. It is maintained in an enzootic cycle involving ornithophilic mosquitoes as vectors and birds as reservoir hosts. Despite massive die-offs in wild bird populations and the detection of severe neurological symptoms in infected humans, little is known about which mosquito species are involved in the propagation of USUV.METHODS: In the present study, the vector competence of a German (i.e. "Central European") and a Serbian (i.e. "Southern European") Culex pipiens biotype molestus laboratory colony was experimentally evaluated. For comparative purposes, Culex torrentium, a frequent species in Northern Europe, and Aedes aegypti, a primarily tropical species, were also tested. Adult female mosquitoes were exposed to bovine blood spiked with USUV Africa 2 and subsequently incubated at 25 °C. After 2 to 3 weeks saliva was collected from each individual mosquito to assess the ability of a mosquito species to transmit USUV.
    RESULTS: Culex pipiens biotype molestus mosquitoes originating from Germany and the Republic of Serbia and Cx. torrentium mosquitoes from Germany proved competent for USUV, as indicated by harboring viable virus in their saliva 21 days post infection. By contrast, Ae. aegypti mosquitoes were relatively refractory to an USUV infection, exhibiting low infection rates and lacking virus in their saliva.
    CONCLUSIONS: Consistent with the high prevalences and abundances of Cx. pipiens biotype molestus and Cx. torrentium in Central and Northern Europe, these two species have most likely played a historic role in the spread, maintenance, and introduction of USUV into Germany. Identification of the key USUV vectors enables the establishment and implementation of rigorous entomological surveillance programs and the development of effective, evidence-based vector control interventions.
    Keywords:  Aedes aegypti; Culex pipiens biotype molestus; Culex torrentium; Usutu virus; Vector competence
    DOI:  https://doi.org/10.1186/s13071-020-04532-1
  5. Philos Trans R Soc Lond B Biol Sci. 2021 Feb 15. 376(1818): 20190802
      Mosquito-borne diseases are an increasing global health challenge, threatening over 40% of the world's population. Despite major advances in malaria control since 2000, recent progress has stalled. Additionally, the risk of Aedes-borne arboviruses is rapidly growing, with the unprecedented spread of dengue and chikungunya viruses, outbreaks of yellow fever and the 2015 epidemic of Zika virus in Latin America. To counteract this growing problem, diverse and innovative mosquito control technologies are currently under development. Conceptually, these span an impressive spectrum of approaches, from invasive transgene cassettes with the potential to crash mosquito populations or reduce the vectorial capacity of a population, to low-cost alterations in housing design that restrict mosquito entry. This themed issue will present articles providing insight into the breadth of mosquito control research, while demonstrating the requirement for an interdisciplinary approach. The issue will highlight mosquito control technologies at varying stages of development and includes both opinion pieces and research articles with laboratory and field-based data on control strategy development. This article is part of the theme issue 'Novel control strategies for mosquito-borne diseases'.
    Keywords:  mosquito; novel approach; vector control; vector-borne disease
    DOI:  https://doi.org/10.1098/rstb.2019.0802
  6. Malar J. 2021 Jan 01. 20(1): 2
      BACKGROUND: There is a global consensus that new intervention tools are needed for the final steps toward malaria elimination/eradication. In a recent study in Burkina Faso, the Lehmann Funnel Entry Trap (LFET) has shown promising results in the reduction of mosquito densities, even in areas where insecticide resistance is as high as 80%. The LFET requires no chemicals and is self-operated. However, one of the issues with the original LFET is the size of the funnel, which often occupies too much space within users' homes. Here, the performance of three new, smaller-sized LFET prototypes that combine a screening and killing effect on mosquitoes was assessed.METHODS: The study was carried out over three months during the rainy season in low and high malaria vector density sites, Soumousso and Vallée du Kou, respectively. The original LFET (or 'Prototype 1'/'P1') was modified to produce three new prototypes, which were referred to as prototype 2 ('the Medium' or 'P2'), prototype 3 (P3) and prototype 4 (P4). Each of the new prototypes was tested on eight days per month over the three-month period to assess their effectiveness in trapping and killing mosquitoes entering houses through the windows compared to the original LFET.
    RESULTS: Overall, 78,435 mosquitoes (mainly Anopheles gambiae sensu lato) were collected in the two study sites, both in the traps and in the houses. A total of 56,430 (72%) mosquitoes were collected from the traps. In Vallée du Kou, the original LFET caught a greater number of mosquitoes than the medium (prototype 2), whereas no difference was observed between the other new prototypes (3 and 4) and the medium. In Soumousso, both the original and medium LFETs collected significantly greater numbers of mosquitoes compared to prototypes 3 and 4.
    CONCLUSION: This study has shown that the new LFET prototypes are effective in trapping mosquitoes in high mosquito density settings. A large-scale study with one of the prototypes will be needed to assess community acceptance of the traps and their ability to control malaria vectors.
    Keywords:  Adult mosquito trap; Anopheles gambiae; Burkina faso; Malaria; Prototypes
    DOI:  https://doi.org/10.1186/s12936-020-03532-x
  7. Philos Trans R Soc Lond B Biol Sci. 2021 Feb 15. 376(1818): 20190811
      Mosquito-borne diseases are a major burden on human health worldwide and their eradication through vector control methods remains challenging. In particular, the success of vector control interventions for targeting diseases such as malaria is under threat, in part due to the evolution of insecticide resistance, while for other diseases effective control solutions are still lacking. The rate at which mosquitoes encounter and bite humans is a key determinant of their capacity for disease transmission. Future progress is strongly reliant on improving our understanding of the mechanisms leading to a mosquito bite. Here, we review the biological factors known to influence the attractiveness of mosquitoes to humans, such as body odour, the skin microbiome, genetics and infection by parasites. We identify the knowledge gaps around the relative contribution of each factor, and the potential links between them, as well as the role of natural selection in shaping vector-host-parasite interactions. Finally, we argue that addressing these questions will contribute to improving current tools and the development of novel interventions for the future. This article is part of the theme issue 'Novel control strategies for mosquito-borne diseases'.
    Keywords:  attractiveness to mosquitoes; human host; malaria parasites; skin microbiome
    DOI:  https://doi.org/10.1098/rstb.2019.0811
  8. Philos Trans R Soc Lond B Biol Sci. 2021 Feb 15. 376(1818): 20190803
      Gene drives are selfish genetic elements that can be re-designed to invade a population and they hold tremendous potential for the control of mosquitoes that transmit disease. Much progress has been made recently in demonstrating proof of principle for gene drives able to suppress populations of malarial mosquitoes, or to make them refractory to the Plasmodium parasites they transmit. This has been achieved using CRISPR-based gene drives. In this article, I will discuss the relative merits of this type of gene drive, as well as barriers to its technical development and to its deployment in the field as malaria control. This article is part of the theme issue 'Novel control strategies for mosquito-borne diseases'.
    Keywords:  CRISPR; anopheles; gene drive; mosquito; transgenic; vector control
    DOI:  https://doi.org/10.1098/rstb.2019.0803
  9. Proc Natl Acad Sci U S A. 2020 Dec 29. 117(52): 32848-32856
      Mosquitoes are a widely diverse group of organisms, comprising ∼3,500 species that live in an enormous range of habitats. Some species are vectors of diseases that afflict hundreds of millions of people each year. Although understanding of mosquito olfaction has progressed dramatically in recent years, mosquito taste remains greatly understudied. Since taste is essential to feeding, egg laying, and mating decisions in insects, improved understanding of taste in mosquitoes could provide new mechanistic insight into many aspects of their behavior. We provide a guide to current knowledge in the field, and we suggest a wealth of opportunities for research that are now enabled by recent scientific and technological advances. We also propose means by which taste might be exploited in new strategies for mosquito control, which may be urgently needed as the geographical ranges of vector species increase with climate change.
    Keywords:  mosquito; taste; vector biology
    DOI:  https://doi.org/10.1073/pnas.2013076117
  10. Philos Trans R Soc Lond B Biol Sci. 2021 Feb 15. 376(1818): 20190814
      In sub-Saharan Africa, most transmission of mosquito-transmitted diseases, such as malaria or dengue, occurs within or around houses. Preventing mosquito house entry and reducing mosquito production around the home would help reduce the transmission of these diseases. Based on recent research, we make key recommendations for reducing the threat of mosquito-transmitted diseases through changes to the built environment. The mnemonic, DELIVER, recommends the following best practices: (i) Doors should be screened, self-closing and without surrounding gaps; (ii) Eaves, the space between the wall and roof, should be closed or screened; (iii) houses should be Lifted above the ground; (iv) Insecticide-treated nets should be used when sleeping in houses at night; (v) houses should be Ventilated, with at least two large-screened windows to facilitate airflow; (vi) Environmental management should be conducted regularly inside and around the home; and (vii) Roofs should be solid, rather than thatch. DELIVER is a package of interventions to be used in combination for maximum impact. Simple changes to the built environment will reduce exposure to mosquito-transmitted diseases and help keep regions free from these diseases after elimination. This article is part of the theme issue 'Novel control strategies for mosquito-borne diseases'.
    Keywords:  built environment; dengue; housing; malaria; sub-Saharan Africa
    DOI:  https://doi.org/10.1098/rstb.2019.0814
  11. Acta Trop. 2020 Dec 29. pii: S0001-706X(20)31722-8. [Epub ahead of print] 105809
      Mosquitoes propagate many human diseases, some widespread and with no vaccines. The Ae. aegypti mosquito vector transmits Zika, Chikungunya, and Dengue viruses. Effective public health interventions to control the spread of these diseases and protect the population require models that explain the core environmental drivers of the vector population. Field campaigns are expensive, and data from meteorological sites that feed models with the required environmental data often lack detail. As a consequence, we explore temporal modeling of the population of Ae. aegypti mosquito vector species and environmental conditions- temperature, moisture, precipitation, and vegetation- have been shown to have significant effects. We use earth observation (EO) data as our source for estimating these biotic and abiotic environmental variables based on proxy features, namely: Normalized difference vegetation index, Normalized difference water index, Precipitation, and Land surface temperature. We obtained our response variable from field-collected mosquito population measured weekly using 791 mosquito traps in Vila Velha city, Brazil, for 36 weeks in 2017, and 40 weeks in 2018. Recent similar studies have used machine learning (ML) techniques for this task. However, these techniques are neither intuitive nor explainable from an operational point of view. As a result, we use a Generalized Linear Model (GLM) to model this relationship due to its fitness for count response variable modeling, its interpretability, and the ability to visualize the confidence intervals for all inferences. Also, to improve our model, we use the Akaike Information Criterion to select the most informative environmental features. Finally, we show how to improve the quality of the model by weighting our GLM. Our resulting weighted GLM compares well in quality with ML techniques: Random Forest and Support Vector Machines. These results provide an advancement with regards to qualitative and explainable epidemiological risk modeling in urban environments.
    Keywords:  Aedes aegypti; Dengue risks; Machine learning; Regression analysis; Remote sensing
    DOI:  https://doi.org/10.1016/j.actatropica.2020.105809
  12. Biomed Res Int. 2020 ;2020 4065315
      Immature mosquitoes are aquatic, and their distribution, abundance, and individual fitness in a particular breeding habitat are known to be dependent on mainly three factors: biotic factors, abiotic factors, and their interaction between each other and with other associated taxa. Mosquito breeding habitats harbor a diversified naturally occurring microbiota assemblage, and the biota have different types of interactions with mosquito larvae in those habitats. Those interactions may include parasitism, pathogenism, predation, and competition which cause the mortality of larvae, natural reduction of larval abundance, or alterations in their growth. Many microbiota species serve as food items for mosquito larvae, and there are also some indigestible or toxic phytoplanktons to larvae. However, when there is coexistence or mutualism of different mosquito species along with associated microbiota, they form a community sharing the habitat requirements. With the available literature, it is evident that the abundance of mosquito larvae is related to the densities of associated microbiota and their composition in that particular breeding habitat. Potential antagonist microbiota which are naturally occurring in mosquito breeding habitats could be used in integrated vector control approaches, and this method rises as an ecofriendly approach in controlling larvae in natural habitats themselves. To date, this aspect has received less attention; only a limited number of species of microbiota inhabiting mosquito breeding habitats have been recorded, and detailed studies on microbiota assemblage in relation to diverse vector mosquito breeding habitats and their association with mosquito larvae are few. Therefore, future studies on this important ecological aspect are encouraged. Such studies may help to identify field characteristic agents that can serve as mosquito controlling candidates in their natural habitats themselves.
    DOI:  https://doi.org/10.1155/2020/4065315