Aging Dis. 2025 Jun 13.
Osteosarcopenia the concurrent deterioration of bone (osteoporosis) and muscle (sarcopenia) represents a critical yet understudied geriatric syndrome that synergistically amplifies frailty, fractures, and loss of independence in aging populations. This dual pathology imposes a staggering socioeconomic burden through increased disability, prolonged hospitalization, and elevated mortality. Despite its clinical urgency, therapeutic advances remain stagnant, as current interventions e.g., bisphosphonates, vitamin D supplementation are palliative and fail to address the shared molecular drivers of bone-muscle crosstalk. Emerging evidence implicates cellular senescence and epigenetic dysregulation as convergent mechanisms driving osteosarcopenia. Senescent osteocytes, burdened by oxidative stress and mitochondrial dysfunction, secrete pro-inflammatory cytokines e.g., IL-6, TNF-α and matrix-degrading enzymes (e.g., MMPs) via the senescence-associated secretory phenotype (SASP), which erodes bone integrity and propagates muscle atrophy. Simultaneously, epigenetic alterations DNA hypermethylation of osteogenic genes RUNX2, histone deacetylation repressing myogenesis MYOD1, and dysregulated non-coding RNAs (miR-133, miR-214) lock musculoskeletal tissues into a degenerative state. These processes are exacerbated by age-related inflammaging and metabolic disturbances e.g., NAD+ depletion, which amplify oxidative stress and chromatin instability. The synergy between senescence and epigenetics in perpetuating osteosarcopenia remains poorly defined. Most preclinical models overlook comorbidities (e.g., diabetes, chronic inflammation) that accelerate musculoskeletal decline. Current therapies senolytics, histone deacetylase (HDAC) inhibitors lack tissue specificity and exhibit pleiotropic effects. This review addresses these gaps by synthesizing cutting-edge insights into the senescence-epigenetics axis as a unifying driver of osteosarcopenia. By elucidating how SASP factors (e.g., myostatin) and epigenetic reprogramming e.g., sirtuin 1 (SIRT1) hypermethylation disrupt bone-muscle crosstalk, we propose novel strategies to break the self-sustaining cycle of tissue degeneration. We highlight the promise of precision geroscience leveraging CRISPR-engineered organoids, multi-omics profiling, and AI-driven biomarkers to decode tissue-specific vulnerabilities and design dual-target therapies e.g., senolytics ++ bromodomain and extra-terminal (BET) inhibitors.