bims-moremu Biomed News
on Molecular regulators of muscle mass
Issue of 2021‒12‒26
38 papers selected by
Anna Vainshtein
Craft Science Inc.


  1. Semin Cell Dev Biol. 2021 Dec 16. pii: S1084-9521(21)00308-6. [Epub ahead of print]
      Mitochondrial turnover in the form of mitophagy is emerging as a central process in maintaining cellular function. The degradation of damaged mitochondria through mitophagy is particularly important in cells/tissues that exhibit high energy demands. Skeletal muscle is one such tissue that requires precise turnover of mitochondria in several conditions in order to optimize energy production and prevent bioenergetic crisis. For instance, the formation of skeletal muscle (i.e., myogenesis) is accompanied by robust turnover of low-functioning mitochondria to eventually allow the formation of high-functioning mitochondria. In mature skeletal muscle, alterations in mitophagy-related signaling occur during exercise, aging, and various disease states. Nonetheless, several questions regarding the direct role of mitophagy in various skeletal muscle conditions remain unknown. Furthermore, given the heterogenous nature of skeletal muscle with respect to various cellular and molecular properties, and the plasticity in these properties in various conditions, the involvement and characterization of mitophagy requires more careful consideration in this tissue. Therefore, this review will highlight the known mechanisms of mitophagy in skeletal muscle, and discuss their involvement during myogenesis and various skeletal muscle conditions. This review also provides important considerations for the accurate measurement of mitophagy and interpretation of data in skeletal muscle.
    Keywords:  Aging; Atrophy; Autophagy; Cancer; Differentiation; Fiber type; Mitochondria; Mitochondrial network; Mitophagy; Myoblasts; Myogenesis; Regeneration; Remodeling; Skeletal muscle
    DOI:  https://doi.org/10.1016/j.semcdb.2021.11.026
  2. Aging Cell. 2021 Dec 21. e13527
      There are functional benefits to exercise in muscle, even when performed late in life, but the contributions of epigenetic factors to late-life exercise adaptation are poorly defined. Using reduced representation bisulfite sequencing (RRBS), ribosomal DNA (rDNA) and mitochondrial-specific examination of methylation, targeted high-resolution methylation analysis, and DNAge™ epigenetic aging clock analysis with a translatable model of voluntary murine endurance/resistance exercise training (progressive weighted wheel running, PoWeR), we provide evidence that exercise may mitigate epigenetic aging in skeletal muscle. Late-life PoWeR from 22-24 months of age modestly but significantly attenuates an age-associated shift toward promoter hypermethylation. The epigenetic age of muscle from old mice that PoWeR-trained for eight weeks was approximately eight weeks younger than 24-month-old sedentary counterparts, which represents ~8% of the expected murine lifespan. These data provide a molecular basis for exercise as a therapy to attenuate skeletal muscle aging.
    Keywords:   Rbm10 ; Timm8a1 ; Horvath clock; PoWeR; rDNA
    DOI:  https://doi.org/10.1111/acel.13527
  3. Cells. 2021 Dec 14. pii: 3527. [Epub ahead of print]10(12):
      Interleukin-6 (IL-6) is a pro-inflammatory cytokine associated with skeletal muscle wasting in cancer cachexia. The control of gene expression by microRNAs (miRNAs) in muscle wasting involves the regulation of thousands of target transcripts. However, the miRNA-target networks associated with IL6-induced muscle atrophy remain to be characterized. Here, we show that IL-6 promotes the atrophy of C2C12 myotubes and changes the expression of 20 miRNAs (5 up-regulated and 15 down-regulated). Gene Ontology analysis of predicted miRNAs targets revealed post-transcriptional regulation of genes involved in cell differentiation, apoptosis, migration, and catabolic processes. Next, we performed a meta-analysis of miRNA-published data that identified miR-497-5p, a down-regulated miRNAs induced by IL-6, also down-regulated in other muscle-wasting conditions. We used miR-497-5p mimics and inhibitors to explore the function of miR-497-5p in C2C12 myoblasts and myotubes. We found that miR-497-5p can regulate the expression of the cell cycle genes CcnD2 and CcnE1 without affecting the rate of myoblast cellular proliferation. Notably, miR-497-5p mimics induced myotube atrophy and reduced Insr expression. Treatment with miR-497-5p inhibitors did not change the diameter of the myotubes but increased the expression of its target genes Insr and Igf1r. These genes are known to regulate skeletal muscle regeneration and hypertrophy via insulin-like growth factor pathway and were up-regulated in cachectic muscle samples. Our miRNA-regulated network analysis revealed a potential role for miR-497-5p during IL6-induced muscle cell atrophy and suggests that miR-497-5p is likely involved in a compensatory mechanism of muscle atrophy in response to IL-6.
    Keywords:  Interleukin-6; inflammation; microRNAs; muscle wasting
    DOI:  https://doi.org/10.3390/cells10123527
  4. Int J Mol Sci. 2021 Dec 08. pii: 13221. [Epub ahead of print]22(24):
      Skeletal muscle accounts for almost 40% of the total adult human body mass. This tissue is essential for structural and mechanical functions such as posture, locomotion, and breathing, and it is endowed with an extraordinary ability to adapt to physiological changes associated with growth and physical exercise, as well as tissue damage. Moreover, skeletal muscle is the most age-sensitive tissue in mammals. Due to aging, but also to several diseases, muscle wasting occurs with a loss of muscle mass and functionality, resulting from disuse atrophy and defective muscle regeneration, associated with dysfunction of satellite cells, which are the cells responsible for maintaining and repairing adult muscle. The most established cell lines commonly used to study muscle homeostasis come from rodents, but there is a need to study skeletal muscle using human models, which, due to ethical implications, consist primarily of in vitro culture, which is the only alternative way to vertebrate model organisms. This review will survey in vitro 2D/3D models of human satellite cells to assess skeletal muscle biology for pre-clinical investigations and future directions.
    Keywords:  2D/3D models; cell culture; myogenesis; satellite cells; skeletal muscle
    DOI:  https://doi.org/10.3390/ijms222413221
  5. Stem Cells Int. 2021 ;2021 9202990
      Background: We recently demonstrated that proliferin-1 (PLF-1) functions as an apoptotic cell-derived growth factor and plays an important role in vascular pathobiology. We therefore investigated its role in muscle regeneration in response to cardiotoxin injury.Methods and Results: To determine the effects of PLF-1 on muscle regeneration, we used a CTX-induced skeletal muscle injury model in 9-week-old male mice that were administered with the recombinant PLF-1 (rPLF-1) or neutralizing PLF-1 antibody. The injured muscles exhibited increased levels of PLF-1 gene expression in a time-dependent manner. On day 14 after injury, rPLF-1 supplementation ameliorated CTX-induced alterations in muscle fiber size, interstitial fibrosis, muscle regeneration capacity, and muscle performance. On day 3 postinjury, rPLF-1 increased the levels of proteins or genes for p-Akt, p-mTOR, p-GSK3α/β, p-Erk1/2, p-p38MAPK, interleukin-10, Pax7, MyoD, and Cyclin B1, and it increased the numbers of CD34+/integrin-α7+ muscle stem cells and proliferating cells in the muscles and/or bone marrow of CTX mice. An enzyme-linked immunosorbent assay revealed that rPLF-1 suppressed the levels of plasma tumor necrosis factor-α and interleukin-1β in CTX mice. PLF-1 blocking accelerated CTX-related muscle damage and dysfunction. In C2C12 myoblasts, rPLF-1 increased the levels of proteins for p-Akt, p-mTOR, p-GSK3α/β, p-Erk1/2, and p-p38MAPK as well as cellular functions; and these effects were diminished by the depletion of PLF-1 or silencing of its mannose-6-phosphate receptor.
    Conclusions: These findings demonstrated that PLF-1 can improve skeletal muscle repair in response to injury, possibly via the modulation of inflammation and proliferation and regeneration, suggesting a novel therapeutic strategy for the management of skeletal muscle diseases.
    DOI:  https://doi.org/10.1155/2021/9202990
  6. Genes Cells. 2021 Dec 20.
      Skeletal muscle atrophy is the loss of muscle tissue caused by factors such as inactivity, malnutrition, aging, and injury. In this study, we aimed to investigate whether egg components exert inhibitory effects on muscle atrophy. An egg mix solution was orally administered for 10 consecutive days to male C57BL/6J mice injected with cardiotoxin in the tibialis anterior (TA) muscle. The administration of egg mixture significantly decreased the atrogin-1 and MuRF-1 protein levels, key factors in muscle atrophy, as observed by western blotting. Furthermore, we investigated the effects of egg components such as avidin, lecithin, biotin, 3-sn-phosphatidylcholine, and L-α-phosphatidylcholine on dexamethasone (DEX)-treated C2C12 myotubes. Lecithin, biotin, 3-sn-phosphatidylcholine, and L-α-phosphatidylcholine in egg yolk significantly recovered the diameters of C2C12 myotubes decreased upon DEX application. Avidin did not show such reversal. Biotin, 3-sn-phosphatidylcholine, and L-α-phosphatidylcholine also attenuated atrogin-1 protein expression enhanced by DEX. Our findings reveal that egg yolk components could contribute to the reversal of skeletal muscle atrophy induced by muscle injury.
    DOI:  https://doi.org/10.1111/gtc.12915
  7. J Cachexia Sarcopenia Muscle. 2021 Dec 20.
      BACKGROUND: Cachexia, a syndrome frequently occurring in cancer patients, is characterized by muscle wasting, altered energy and protein metabolism and impaired myogenesis. Tumour-derived microvesicles (TMVs) containing proteins, messenger RNAs (mRNAs), and non-coding RNAs could contribute to cancer-induced muscle wasting.METHODS: Differential ultracentrifugation was used to isolate TMVs from the conditioned medium of Lewis lung carcinoma and C26 colon carcinoma cell cultures. TMVs were added to the culture medium of C2C12 myoblasts and myotubes for 24-48-72 h, and the effects on protein and energy metabolism were assessed. TMVs were also isolated from the blood of C26-bearing mice. MicroRNA (miR) profile of TMVs was obtained by RNA-seq and validated by digital drop PCR. Selected miRs were overexpressed in C2C12 myoblasts to assess the effects on myogenic differentiation.
    RESULTS: Differentiation was delayed in C2C12 myoblasts exposed to TMVs, according to reduced expression of myosin heavy chain (MyHC; about 62% of controls at Day 4) and myogenin (about 68% of controls at Day 4). As for myotubes, TMVs did not affect the expression of MyHC, while revealed able to modulate mitochondria and oxidative metabolism. Indeed, reduced mRNA levels of PGC-1α (C = 1 ± 0.2, TMV = 0.57 ± 0.06, normalized fold change, P < 0.05) and Cytochrome C (C = 1 ± 0.2, TMV = 0.65 ± 0.04, normalized fold change, P < 0.05), associated with increased BNIP3 expression (C = 1 ± 0.1, TMV = 1.29 ± 0.2, normalized fold change, P < 0.05), were observed, suggesting reduced mitochondrial biogenesis/amount and enhanced mitophagy. These changes were paralleled by decreased oxygen consumption (C = 686.9 ± 44 pmol/min, TMV = 552.25 ± 24 pmol/min, P < 0.01) and increased lactate levels (C = 0.0063 ± 0.00045 nmol/μL, TMV = 0.0094 ± 0.00087 nmol/μL, P < 0.01). A total of 118 miRs were found in MVs derived from the plasma of the C26 hosts; however, only three of them were down-regulated (RNA-seq): miR-181a-5p (-1.46 fold change), miR-375-3p (-2.52 fold change), and miR-455-5p (-3.87 fold change). No correlation could be observed among miRs in the MVs obtained from the blood of the C26 host and those released by C26 cells in the culture medium. Overexpression of miR-148a-3p and miR-181a-5p in C2C12 myoblasts revealed the ability to impinge on the mRNA levels of Myf5, Myog, and MyHC (Myh4 and Myh7).
    CONCLUSIONS: These results show that in C2C12 cultures, TMVs are able to affect both differentiation and the mitochondrial system. Such effects could be related to TMV-contained miRs.
    Keywords:  Cancer cachexia; MicroRNAs; Microvesicles; Mitochondria; Muscle wasting; Myogenesis
    DOI:  https://doi.org/10.1002/jcsm.12844
  8. Front Cell Dev Biol. 2021 ;9 759237
      Satellite stem cell availability and high regenerative capacity have made them an ideal therapeutic approach for muscular dystrophies and neuromuscular diseases. Adult satellite stem cells remain in a quiescent state and become activated upon muscular injury. A series of molecular mechanisms succeed under the control of epigenetic regulation and various myogenic regulatory transcription factors myogenic regulatory factors, leading to their differentiation into skeletal muscles. The regulation of MRFs via various epigenetic factors, including DNA methylation, histone modification, and non-coding RNA, determine the fate of myogenesis. Furthermore, the development of histone deacetylation inhibitors (HDACi) has shown promising benefits in their use in clinical trials of muscular diseases. However, the complete application of using satellite stem cells in the clinic is still not achieved. While therapeutic advancements in the use of HDACi in clinical trials have emerged, histone methylation modulations and the long non-coding RNA (lncRNA) are still under study. A comprehensive understanding of these other significant epigenetic modulations is still incomplete. This review aims to discuss some of the current studies on these two significant epigenetic modulations, histone methylation and lncRNA, as potential epigenetic targets in skeletal muscle regeneration. Understanding the mechanisms that initiate myoblast differentiation from its proliferative state to generate new muscle fibres will provide valuable information to advance the field of regenerative medicine and stem cell transplant.
    Keywords:  epigenetics; histone methylation; lncRNAs; satellite stem cells; skeletal muscle; skeletal muscle regeneration
    DOI:  https://doi.org/10.3389/fcell.2021.759237
  9. Biology (Basel). 2021 Dec 12. pii: 1318. [Epub ahead of print]10(12):
      Age-related loss of skeletal muscle is associated with obesity and inflammation. In animal models, intramuscular fat deposits compromise muscle integrity; however, the relevant fat components that mediate muscular inflammation are not known. Previously, we hypothesized that free fatty acids (FFAs) may directly induce inflammatory gene expression in skeletal muscle cells of obese rats. Here, we examined this hypothesis in primary human skeletal myoblasts (SkMs) using multiplex expression analysis of 39 inflammatory proteins in response to different FFA species. Multiplex mRNA quantification confirmed that the IL6, IL1RA, IL4, LIF, CXCL8, CXCL1, CXCL12 and CCL2 genes were differentially regulated by saturated and unsaturated C16 or C18 FFAs. Fluorescence staining revealed that only saturated C16 and C18 strongly interfere with myoblast replication independent of desmin expression, mitochondrial abundance and oxidative activity. Furthermore, we addressed the possible implications of 71 human receptor tyrosine kinases (RTKs) in FFA-mediated effects. Phosphorylated EphB6 and TNK2 were associated with impaired myoblast replication by saturated C16 and C18 FFAs. Our data suggest that abundant FFA species in human skeletal muscle tissue may play a decisive role in the progression of sarcopenic obesity by affecting inflammatory signals or myoblast replication.
    Keywords:  chemokines; cytokines; free fatty acids; human primary skeletal muscle cells; inflammation; phosphorylation pathways; receptor tyrosine kinases
    DOI:  https://doi.org/10.3390/biology10121318
  10. Cells. 2021 Nov 23. pii: 3267. [Epub ahead of print]10(12):
      Efferocytosis, i.e., engulfment of dead cells by macrophages, is a crucial step during tissue repair after an injury. Efferocytosis delineates the transition from the pro-inflammatory phase of the inflammatory response to the recovery phase that ensures tissue reconstruction. We present here the role of efferocytosis during skeletal muscle regeneration, which is a paradigm of sterile tissue injury followed by a complete regeneration. We present the molecular mechanisms that have been described to control this process, and particularly the metabolic control of efferocytosis during skeletal muscle regeneration.
    Keywords:  efferocytosis; macrophages; resolution of inflammation; skeletal muscle regeneration
    DOI:  https://doi.org/10.3390/cells10123267
  11. Biochem Biophys Res Commun. 2021 Dec 11. pii: S0006-291X(21)01662-4. [Epub ahead of print]589 192-196
      A concurrent reduction in muscle mass and strength is frequently observed in numerous conditions, including neuromuscular disease, ageing, and muscle inactivity due to limb immobilization or prolonged bed rest. Thus, identifying the molecular mechanisms that control skeletal muscle mass and strength is fundamental for developing interventions aimed at counteracting muscle loss (muscle atrophy). It was recently reported that muscle atrophy induced by denervation of motor nerves was associated with increased expression of Ca2+/calmodulin-dependent protein serine/threonine kinase II β (CaMKIIβ) in muscle. In addition, treatment with KN-93 phosphate, which inhibits CaMKII-family kinases, partly suppressed denervation-induced muscle atrophy. Therefore, to test a possible role for CaMKIIβ in muscle mass regulation, we generated and injected recombinant adeno-associated virus (AAV) vectors encoding wild-type (AAV-WT), inactive (AAV-K43 M), or constitutively active (AAV-T287D) CaMKIIβ into the left hindlimb tibialis anterior muscle of mice at three months of age. Although AAV-WT infection induced expression of exogenous CaMKIIβ in the hindlimb muscle, no significant changes in muscle mass and strength were observed. By contrast, AAV-K43 M or AAV-T287D infection induced exogenous expression of the corresponding mutants and significantly increased or decreased the muscle mass and strength of the infected hind limb, respectively. Together, these findings demonstrate the potential of CaMKIIβ as a novel therapeutic target for enhancing muscle mass and strength.
    Keywords:  Adeno-associated virus vector; Ca(2+)/calmodulin-dependent kinase II; Skeletal muscle
    DOI:  https://doi.org/10.1016/j.bbrc.2021.12.027
  12. Metabolites. 2021 Dec 08. pii: 855. [Epub ahead of print]11(12):
      Skeletal muscle is a very dynamic and plastic tissue, being essential for posture, locomotion and respiratory movement. Muscle atrophy or genetic muscle disorders, such as muscular dystrophies, are characterized by myofiber degeneration and replacement with fibrotic tissue. Recent studies suggest that changes in muscle metabolism such as mitochondrial dysfunction and dysregulation of intracellular Ca2+ homeostasis are implicated in many adverse conditions affecting skeletal muscle. Accumulating evidence also suggests that ER stress may play an important part in the pathogenesis of inflammatory myopathies and genetic muscle disorders. Among the different known proteins regulating ER structure and function, we focused on RTN-1C, a member of the reticulon proteins family localized on the ER membrane. We previously demonstrated that RTN-1C expression modulates cytosolic calcium concentration and ER stress pathway. Moreover, we recently reported a role for the reticulon protein in autophagy regulation. In this study, we found that muscle differentiation process positively correlates with RTN-1C expression and UPR pathway up-regulation during myogenesis. To better characterize the role of the reticulon protein alongside myogenic and muscle regenerative processes, we performed in vivo experiments using either a model of muscle injury or a photogenic model for Duchenne muscular dystrophy. The obtained results revealed RTN-1C up-regulation in mice undergoing active regeneration and localization in the injured myofibers. The presented results strongly suggested that RTN-1C, as a protein involved in key aspects of muscle metabolism, may represent a new target to promote muscle regeneration and repair upon injury.
    Keywords:  Duchenne muscular dystrophy; RTN-1C; UPR; muscle differentiation
    DOI:  https://doi.org/10.3390/metabo11120855
  13. J Biol Chem. 2021 Dec 20. pii: S0021-9258(21)01326-0. [Epub ahead of print] 101516
      The thymus is the central immune organ, but it is known to progressively degenerate with age. As thymus degeneration is paralleled by the wasting of aging skeletal muscle, we speculated that the thymus may play a role in muscle wasting. Here, using thymectomized mice, we show that the thymus is necessary for skeletal muscle regeneration, a process tightly associated with muscle aging. Compared to control mice, the thymectomized mice displayed comparable growth of muscle mass, but decreased muscle regeneration in response to injury, as evidenced by small and sparse regenerative myofibers along with inhibited expression of regeneration-associated genes myh3, myod and myogenin. Using Pax7 immunofluorescence staining and BrdU incorporation assay, we determined that the decreased regeneration capacity was caused by a limited satellite cell pool. Interestingly, the conditioned culture medium of isolated thymocytes (TCMs) had a potent capacity to directly stimulate satellite cell expansion in vitro. These expanded cells were enriched in subpopulations of quiescent satellite cells (Pax7highMyoDlowEdUpos) and activated satellite cells (Pax7highMyoDhighEdUpos), which were efficiently incorporated into the regenerative myofibers. We thus propose that the thymus plays an essential role in muscle regeneration by directly promoting satellite cell expansion and may function profoundly in the muscle aging process.
    Keywords:  conditioned medium; proliferation; satellite cells; skeletal muscle regeneration; thymus
    DOI:  https://doi.org/10.1016/j.jbc.2021.101516
  14. Aging Cell. 2021 Dec 24. e13536
      Sarcopenia is an important health problem associated with adverse outcomes. Although the etiology of sarcopenia remains poorly understood, factors apart from muscle fibers, including humoral factors, might be involved. Here, we used cytokine antibody arrays to identify humoral factors involved in sarcopenia and found a significant increase in levels of milk fat globule epidermal growth factor 8 (MFG-E8) in skeletal muscle of aged mice, compared with young mice. We found that the increase in MFG-E8 protein at arterial walls and neuromuscular junctions (NMJs) in muscles of aged mice. High levels of MFG-E8 at NMJs and an age-related increase in arterial MFG-E8 have also been identified in human skeletal muscle. In NMJs, MFG-E8 is localized on the surface of terminal Schwann cells, which are important accessory cells for the maintenance of NMJs. We found that increased MFG-E8 at NMJs precedes age-related denervation and is more prominent in sarcopenia-susceptible fast-twitch than in sarcopenia-resistant slow-twitch muscle. Comparison between fast and slow muscles further revealed that arterial MFG-E8 can be uncoupled from sarcopenic phenotype. A genetic deficiency in MFG-E8 attenuated age-related denervation of NMJs and muscle weakness, providing evidence of a pathogenic role of increased MFG-E8. Thus, our study revealed a mechanism by which increased MFG-E8 at NMJs leads to age-related NMJ degeneration and suggests that targeting MFG-E8 could be a promising therapeutic approach to prevent sarcopenia.
    Keywords:  MFG-E8; aging; denervation; neuromuscular junction; sarcopenia; skeletal muscle
    DOI:  https://doi.org/10.1111/acel.13536
  15. Curr Med Chem. 2021 Dec 16.
      Loss of skeletal muscle (SkM) quality is associated with different clinical conditions such as aging, diabetes, obesity, cancer and heart failure. Nutritional research has focused on identifying naturally occurring molecules that mitigate the loss of SkM quality induced by a pathology or syndrome. In this context, although few human studies have been conducted, Epicatechin (Epi) is a prime candidate that may positively affect SkM quality by its potential ability to mitigate muscle mass loss. This seems to be a consequence of its antioxidant, anti-inflammatory properties, and its stimulation of mitochondrial biogenesis to increase myogenic differentiation, as well as its modulation of key proteins involved in SkM structure, function, metabolism, and growth. In conclusion, the Epi could prevent, mitigate, delay, and even treat muscle-related disorders caused by aging and diseases, however, studies in humans are needed.
    Keywords:  Inflammation; Muscle quality; Muscular Dystrophy; Antioxidants; Oxidative Stress
    DOI:  https://doi.org/10.2174/0929867329666211217100020
  16. Front Physiol. 2021 ;12 771499
      Duchenne muscular dystrophy is caused by the absence of the protein dystrophin from skeletal muscle and is characterized by progressive cycles of necrosis/regeneration. Using the dystrophin deficient mdx mouse model, we studied the morphological and contractile chronology of dystrophic skeletal muscle pathology in fast-twitch Extensor Digitorum Longus muscles from animals 4-22 months of age containing 100% regenerated muscle fibers. Catastrophically, the older age groups lost ∼80% of their maximum force after one eccentric contraction (EC) of 20% strain with the greatest loss of ∼92% recorded in senescent 22-month-old mdx mice. In old age groups, there was minimal force recovery ∼24% after 120 min, correlated with a dramatic increase in the number and complexity of branched fibers. This data supports our two-phase model where a "tipping point" is reached when branched fibers rupture irrevocably on EC. These findings have important implications for pre-clinical drug studies and genetic rescue strategies.
    Keywords:  Duchenne muscular dystrophy (DMD); eccentric contraction; extensor digitorum longus (EDL); fiber branching; mdx
    DOI:  https://doi.org/10.3389/fphys.2021.771499
  17. Dev Cell. 2021 Dec 20. pii: S1534-5807(21)00946-1. [Epub ahead of print]56(24): 3349-3363.e6
      Myoblast fusion is essential for muscle development and regeneration. Yet, it remains poorly understood how mononucleated myoblasts fuse with preexisting fibers. We demonstrate that ERK1/2 inhibition (ERKi) induces robust differentiation and fusion of primary mouse myoblasts through a linear pathway involving RXR, ryanodine receptors, and calcium-dependent activation of CaMKII in nascent myotubes. CaMKII activation results in myotube growth via fusion with mononucleated myoblasts at a fusogenic synapse. Mechanistically, CaMKII interacts with and regulates MYMK and Rac1, and CaMKIIδ/γ knockout mice exhibit smaller regenerated myofibers following injury. In addition, the expression of a dominant negative CaMKII inhibits the formation of large multinucleated myotubes. Finally, we demonstrate the evolutionary conservation of the pathway in chicken myoblasts. We conclude that ERK1/2 represses a signaling cascade leading to CaMKII-mediated fusion of myoblasts to myotubes, providing an attractive target for the cultivated meat industry and regenerative medicine.
    Keywords:  CaMKII; ERK1/2; calcium; cultivated meat; muscle regeneration; myoblast fusion; myogenesis
    DOI:  https://doi.org/10.1016/j.devcel.2021.11.022
  18. JCI Insight. 2021 Dec 22. pii: e154089. [Epub ahead of print]6(24):
      Ammonia is a cytotoxic metabolite with pleiotropic molecular and metabolic effects, including senescence induction. During dysregulated ammonia metabolism, which occurs in chronic diseases, skeletal muscle becomes a major organ for nonhepatocyte ammonia uptake. Muscle ammonia disposal occurs in mitochondria via cataplerosis of critical intermediary metabolite α-ketoglutarate, a senescence-ameliorating molecule. Untargeted and mitochondrially targeted data were analyzed by multiomics approaches. These analyses were validated experimentally to dissect the specific mitochondrial oxidative defects and functional consequences, including senescence. Responses to ammonia lowering in myotubes and in hyperammonemic portacaval anastomosis rat muscle were studied. Whole-cell transcriptomics integrated with whole-cell, mitochondrial, and tissue proteomics showed distinct temporal clusters of responses with enrichment of oxidative dysfunction and senescence-related pathways/proteins during hyperammonemia and after ammonia withdrawal. Functional and metabolic studies showed defects in electron transport chain complexes I, III, and IV; loss of supercomplex assembly; decreased ATP synthesis; increased free radical generation with oxidative modification of proteins/lipids; and senescence-associated molecular phenotype-increased β-galactosidase activity and expression of p16INK, p21, and p53. These perturbations were partially reversed by ammonia lowering. Dysregulated ammonia metabolism caused reversible mitochondrial dysfunction by transcriptional and translational perturbations in multiple pathways with a distinct skeletal muscle senescence-associated molecular phenotype.
    Keywords:  Cell Biology; Cellular senescence; Hepatology; Mitochondria; Skeletal muscle
    DOI:  https://doi.org/10.1172/jci.insight.154089
  19. Cells. 2021 Dec 07. pii: 3443. [Epub ahead of print]10(12):
      Physical training improves insulin sensitivity and can prevent type 2 diabetes (T2D). However, approximately 20% of individuals lack a beneficial outcome in glycemic control. TGF-β, identified as a possible upstream regulator involved in this low response, is also a potent regulator of microRNAs (miRNAs). The aim of this study was to elucidate the potential impact of TGF-β-driven miRNAs on individual exercise response. Non-targeted long and sncRNA sequencing analyses of TGF-β1-treated human skeletal muscle cells corroborated the effects of TGF-β1 on muscle cell differentiation, the induction of extracellular matrix components, and identified several TGF-β1-regulated miRNAs. qPCR validated a potent upregulation of miR-143-3p/145-5p and miR-181a2-5p by TGF-β1 in both human myoblasts and differentiated myotubes. Healthy subjects who were overweight or obese participated in a supervised 8-week endurance training intervention (n = 40) and were categorized as responder or low responder in glycemic control based on fold change ISIMats (≥+1.1 or <+1.1, respectively). In skeletal muscle biopsies of low responders, TGF-β signaling and miR-143/145 cluster levels were induced by training at much higher rates than among responders. Target-mining revealed HDACs, MYHs, and insulin signaling components INSR and IRS1 as potential miR-143/145 cluster targets. All these targets were down-regulated in TGF-β1-treated myotubes. Transfection of miR-143-3p/145-5p mimics in differentiated myotubes validated MYH1, MYH4, and IRS1 as miR-143/145 cluster targets. Elevated TGF-β signaling and miR-143/145 cluster induction in skeletal muscle of low responders might obstruct improvements in insulin sensitivity by training in two ways: by a negative impact of miR-143-3p on muscle cell fusion and myofiber functionality and by directly impairing insulin signaling via a reduction in INSR by TGF-β and finetuned IRS1 suppression by miR-143-3p.
    Keywords:  DEUS; IRS1; TGF-β1; exercise; insulin sensitivity; miR-143; miR-145; training response
    DOI:  https://doi.org/10.3390/cells10123443
  20. Cell Mol Life Sci. 2021 Dec 22. 79(1): 7
      Amyotrophic lateral sclerosis is a fatal neurodegenerative disorder that leads to progressive degeneration of motor neurons and severe muscle atrophy without effective treatment. Most research on the disease has been focused on studying motor neurons and supporting cells of the central nervous system. Strikingly, the recent observations have suggested that morpho-functional alterations in skeletal muscle precede motor neuron degeneration, bolstering the interest in studying muscle tissue as a potential target for the delivery of therapies. We previously showed that the systemic administration of the P2XR7 agonist, 2'(3')-O-(4-benzoylbenzoyl) adenosine 5-triphosphate (BzATP), enhanced the metabolism and promoted the myogenesis of new fibres in the skeletal muscles of SOD1G93A mice. Here we further corroborated this evidence showing that intramuscular administration of BzATP improved the motor performance of ALS mice by enhancing satellite cells and the muscle pro-regenerative activity of infiltrating macrophages. The preservation of the skeletal muscle retrogradely propagated along with the motor unit, suggesting that backward signalling from the muscle could impinge on motor neuron death. In addition to providing the basis for a suitable adjunct multisystem therapeutic approach in ALS, these data point out that the muscle should be at the centre of ALS research as a target tissue to address novel therapies in combination with those oriented to the CNS.
    Keywords:  Amyotrophic lateral sclerosis; Macrophages; Mouse models; Myogenesis; Satellite cells; Skeletal muscle
    DOI:  https://doi.org/10.1007/s00018-021-04070-8
  21. Antioxidants (Basel). 2021 Dec 12. pii: 1980. [Epub ahead of print]10(12):
      Dysfunctional mitochondrial metabolism has been linked to skeletal muscle loss in several physio-pathological states. Although it has been reported that vitamin D (VD) supports cellular redox homeostasis by maintaining normal mitochondrial functions, and VD deficiency often occurs in conditions associated with skeletal muscle loss, the efficacy of VD supplementation to overcome muscle wasting is debated. Investigations on the direct effects of VD metabolites on skeletal muscle using C2C12 myotubes have revealed an unexpected pro-atrophic activity of calcitriol (1,25VD), while its upstream metabolites cholecalciferol (VD3) and calcidiol (25VD) have anti-atrophic effects. Here, we investigated if the atrophic effects of 1,25VD on myotubes depend on its activity on mitochondrial metabolism. The impact of 1,25VD and its upstream metabolites VD3 and 25VD on mitochondria dynamics and the activity of C2C12 myotubes was evaluated by measuring mitochondrial content, architecture, metabolism, and reactive oxygen species (ROS) production. We found that 1,25VD induces atrophy through protein kinase C (PKC)-mediated ROS production, mainly of extramitochondrial origin. Consistent with this, cotreatment with the antioxidant N-acetylcysteine (NAC), but not with the mitochondria-specific antioxidant mitoTEMPO, was sufficient to blunt the atrophic activity of 1,25VD. In contrast, VD3 and 25VD have antioxidant properties, suggesting that the efficacy of VD supplementation might result from the balance between atrophic pro-oxidant (1,25VD) and protective antioxidant (VD3 and 25VD) metabolites.
    Keywords:  ROS production; aging; cachexia; mitochondrial respiration; oxidative stress; sarcopenia; skeletal muscle atrophy; vitamin D receptor (VDR)
    DOI:  https://doi.org/10.3390/antiox10121980
  22. J Cachexia Sarcopenia Muscle. 2021 Dec 23.
      BACKGROUND: Cachexia-associated skeletal muscle wasting or 'sarcopenia' is highly prevalent in ovarian cancer and contributes to poor outcome. Drivers of cachexia-associated sarcopenia in ovarian cancer remain elusive, underscoring the need for novel and better models to identify tumour factors inducing sarcopenia. We aimed to assess whether factors present in ascites of sarcopenic vs. non-sarcopenic ovarian cancer patients differentially affect protein metabolism in skeletal muscle cells and to determine if these effects are correlated to cachexia-related patient characteristics.METHODS: Fifteen patients with an ovarian mass and ascites underwent extensive physical screening focusing on cachexia-related parameters. Based on computed tomography-based body composition imaging, six cancer patients were classified as sarcopenic and six were not; three patients with a benign condition served as an additional non-sarcopenic control group. Ascites was collected, and concentrations of cachexia-associated factors were assessed by enzyme-linked immunosorbent assay. Subsequently, ascites was used for in vitro exposure of C2C12 myotubes followed by measurements of protein synthesis and breakdown by radioactive isotope tracing, qPCR-based analysis of atrophy-related gene expression, and NF-κB activity reporter assays.
    RESULTS: C2C12 protein synthesis was lower after exposure to ascites from sarcopenic patients (sarcopenia 3.1 ± 0.1 nmol/h/mg protein vs. non-sarcopenia 5.5 ± 0.2 nmol/h/mg protein, P < 0.01), and protein breakdown rates tended to be higher (sarcopenia 31.2 ± 5.2% vs. non-sarcopenia 20.9 ± 1.9%, P = 0.08). Ascites did not affect MuRF1, Atrogin-1, or REDD1 expression of C2C12 myotubes, but NF-κB activity was specifically increased in cells exposed to ascites from sarcopenic patients (sarcopenia 2.2 ± 0.4-fold compared with control vs. non-sarcopenia 1.2 ± 0.2-fold compared with control, P = 0.01). Protein synthesis and breakdown correlated with NF-κB activity (rs  = -0.60, P = 0.03 and rs  = 0.67, P = 0.01, respectively). The skeletal muscle index of the ascites donors was also correlated to both in vitro protein synthesis (rs  = 0.70, P = 0.005) and protein breakdown rates (rs  = -0.57, P = 0.04).
    CONCLUSIONS: Ascites of sarcopenic ovarian cancer patients induces pronounced skeletal muscle protein metabolism changes in C2C12 cells that correlate with clinical muscle measures of the patient and that are characteristic of cachexia. The use of ascites offers a new experimental tool to study the impact of both tumour-derived and systemic factors in various cachexia model systems, enabling identification of novel drivers of tissue wasting in ovarian cancer.
    Keywords:  Atrogenes; C2C12 cells; Interleukin-6; Myotubes; NF-κB; Protein breakdown; Protein synthesis; Translational research
    DOI:  https://doi.org/10.1002/jcsm.12885
  23. Cells. 2021 Nov 24. pii: 3292. [Epub ahead of print]10(12):
      Motoneurons, skeletal muscle fibers, and Schwann cells form synapses, termed neuromuscular junctions (NMJs). These control voluntary body movement and are affected in numerous neuromuscular diseases. Therefore, a variety of NMJ in vitro models have been explored to enable mechanistic and pharmacological studies. So far, selective integration of Schwann cells in these models has been hampered, due to technical limitations. Here we present robust protocols for derivation of Schwann cells from human induced pluripotent stem cells (hiPSC) and their coculture with hiPSC-derived motoneurons and C2C12 muscle cells. Upon differentiation with tuned BMP signaling, Schwann cells expressed marker proteins, S100b, Gap43, vimentin, and myelin protein zero. Furthermore, they displayed typical spindle-shaped morphologies with long processes, which often aligned with motoneuron axons. Inclusion of Schwann cells in coculture experiments with hiPSC-derived motoneurons and C2C12 myoblasts enhanced myotube growth and affected size and number of acetylcholine receptor plaques on myotubes. Altogether, these data argue for the availability of a consistent differentiation protocol for Schwann cells and their amenability for functional integration into neuromuscular in vitro models, fostering future studies of neuromuscular mechanisms and disease.
    Keywords:  AChR; NMJ; Schwann cells; acetylcholine receptors; hiPSC; in vitro; neural crest; neuromuscular junction; stem cells
    DOI:  https://doi.org/10.3390/cells10123292
  24. Cells. 2021 Nov 23. pii: 3272. [Epub ahead of print]10(12):
      Skeletal muscle atrophy occurs in several pathological conditions, such as cancer, especially during cancer-induced cachexia. This condition is associated with increased morbidity and poor treatment response, decreased quality of life, and increased mortality in cancer patients. A leucine-rich diet could be used as a coadjutant therapy to prevent muscle atrophy in patients suffering from cancer cachexia. Besides muscle atrophy, muscle function loss is even more important to patient quality of life. Therefore, this study aimed to investigate the potential beneficial effects of leucine supplementation on whole-body functional/movement properties, as well as some markers of muscle breakdown and inflammatory status. Adult Wistar rats were randomly distributed into four experimental groups. Two groups were fed with a control diet (18% protein): Control (C) and Walker 256 tumour-bearing (W), and two other groups were fed with a leucine-rich diet (18% protein + 3% leucine): Leucine Control (L) and Leucine Walker 256 tumour-bearing (LW). A functional analysis (walking, behaviour, and strength tests) was performed before and after tumour inoculation. Cachexia parameters such as body weight loss, muscle and fat mass, pro-inflammatory cytokine profile, and molecular and morphological aspects of skeletal muscle were also determined. As expected, Walker 256 tumour growth led to muscle function decline, cachexia manifestation symptoms, muscle fibre cross-section area reduction, and classical muscle protein degradation pathway activation, with upregulation of FoxO1, MuRF-1, and 20S proteins. On the other hand, despite having no effect on the walking test, inflammation status or muscle oxidative capacity, the leucine-rich diet improved muscle strength and behaviour performance, maintained body weight, fat and muscle mass and decreased some protein degradation markers in Walker 256 tumour-bearing rats. Indeed, a leucine-rich diet alone could not completely revert cachexia but could potentially diminish muscle protein degradation, leading to better muscle functional performance in cancer cachexia.
    Keywords:  cancer cachexia; leucine supplementation; muscle function; protein degradation
    DOI:  https://doi.org/10.3390/cells10123272
  25. J Transl Med. 2021 Dec 20. 19(1): 519
      BACKGROUND: Duchenne muscular dystrophy (DMD) is an X-linked inherited disease caused by mutations in the gene encoding dystrophin that leads to a severe and ultimately life limiting muscle-wasting condition. Recombinant adeno-associated vector (rAAV)-based gene therapy is promising, but the size of the full-length dystrophin cDNA exceeds the packaging capacity of a rAAV. Alternative or complementary strategies that could treat DMD patients are thus needed. Intracellular calcium overload due to a sarcolemma permeability to calcium (SPCa) increase is an early and critical step of the DMD pathogenesis. We assessed herein whether TRPC1 and TRPC3 calcium channels may be involved in skeletal muscle SPCa alterations and could represent therapeutic targets to treat DMD.METHODS: All experiments were conducted in the DMDmdx rat, an animal model that closely reproduces the human DMD disease. We measured the cytosolic calcium concentration ([Ca2+]c) and SPCa in EDL (Extensor Digitorum Longus) muscle fibers from age-matched WT and DMDmdx rats of 1.5 to 7 months old. TRPC1 and TRPC3 expressions were measured in the EDL muscles at both the mRNA and protein levels, by RT-qPCR, western blot and immunocytofluorescence analysis.
    RESULTS: As expected from the malignant hyperthermia like episodes observed in several DMDmdx rats, calcium homeostasis alterations were confirmed by measurements of early increases in [Ca2+]c and SPCa in muscle fibers. TRPC3 and TRPC1 protein levels were increased in DMDmdx rats. This was observed as soon as 1.5 months of age for TRPC3 but only at 7 months of age for TRPC1. A slight but reliable shift of the TRPC3 apparent molecular weight was observed in DMDmdx rat muscles. Intracellular localization of both channels was not altered. We thus focused our attention on TRPC3. Application of Pyr10, a specific inhibitor of TRPC3, abolished the differences between SPCa values measured in WT and DMDmdx. Finally, we showed that a rAAV-microdystrophin based treatment induced a high microdystrophin expression but only partial prevention of calcium homeostasis alterations, skeletal muscle force and TRPC3 protein increase.
    CONCLUSIONS: All together our results show that correcting TRPC3 channel expression and/or activity appear to be a promising approach as a single or as a rAAV-based complementary therapy to treat DMD.
    Keywords:  Calcium; DMD; DMD mdx rat; Gene therapy; Skeletal muscle; TRPC1; TRPC3
    DOI:  https://doi.org/10.1186/s12967-021-03191-9
  26. Life Sci. 2021 Dec 20. pii: S0024-3205(21)01226-1. [Epub ahead of print] 120239
      Aim Investigate whether inheritance of improved skeletal muscle mitochondrial function and its association with glycemic control are multigenerational benefits of exercise.MAIN METHODS: Male Swiss mice were subjected to 8 weeks of endurance training and mated with untrained females.
    KEY FINDINGS: Trained fathers displayed typical endurance training-induced adaptations. Remarkably, offspring from trained fathers also exhibited higher endurance performance, mitochondrial oxygen consumption, glucose tolerance and insulin sensitivity. However, PGC-1〈 expression was not increased in the offspring. In the offspring, the expression of the co-repressor NCoR1 was reduced, increasing activation of PGC-1〈 target genes. These effects correlated with higher DNA methylation at the NCoR1 promoter in both, the sperm of trained fathers and in the skeletal muscle of their offspring.
    SIGNIFICANCE: Higher skeletal muscle mitochondrial function is inherited by epigenetic de-activation of a key PGC-1〈 co-repressor.
    Keywords:  Generation transmission; Glycemic control; Mitochondria; NCoR1
    DOI:  https://doi.org/10.1016/j.lfs.2021.120239
  27. Sci Rep. 2021 Dec 24. 11(1): 24437
      Skeletal muscle fibers rely upon either oxidative phosphorylation or the glycolytic pathway with much less reliance on oxidative phosphorylation to achieve muscular contractions that power mechanical movements. Species with energy-intensive adaptive traits that require sudden bursts of energy have a greater dependency on glycolytic fibers. Glycolytic fibers have decreased reliance on OXPHOS and lower mitochondrial content compared to oxidative fibers. Hence, we hypothesized that gene loss might have occurred within the OXPHOS pathway in lineages that largely depend on glycolytic fibers. The protein encoded by the COA1/MITRAC15 gene with conserved orthologs found in budding yeast to humans promotes mitochondrial translation. We show that gene disrupting mutations have accumulated within the COA1 gene in the cheetah, several species of galliform birds, and rodents. The genomic region containing COA1 is a well-established evolutionary breakpoint region in mammals. Careful inspection of genome assemblies of closely related species of rodents and marsupials suggests two independent COA1 gene loss events co-occurring with chromosomal rearrangements. Besides recurrent gene loss events, we document changes in COA1 exon structure in primates and felids. The detailed evolutionary history presented in this study reveals the intricate link between skeletal muscle fiber composition and the occasional dispensability of the chaperone-like role of the COA1 gene.
    DOI:  https://doi.org/10.1038/s41598-021-04077-y
  28. J Appl Physiol (1985). 2021 Dec 23.
      Thioredoxin-interacting protein (TXNIP) negatively effects the redox state and growth signaling via its interactions with thioredoxin (TRX) and regulated in development and DNA damage response 1 (REDD1), respectively. TXNIP expression is downregulated by pathways activated during aerobic exercise (AE), via posttranslational modifications (PTMs; serine phosphorylation and ubiquitination). The purpose of this investigation was to determine the effects of acute AE on TXNIP expression, posttranslational modifications, and its interacting partners, REDD1 and TRX. Fifteen healthy adults performed 30 minutes of aerobic exercise (80% VO2max) with muscle biopsies taken before, immediately following, and three hours following the exercise bout. To explore potential mechanisms underlying our in vivo findings, primary human myotubes were exposed to two models of exercise, electrical pulse stimulation (EPS) and palmitate-forskolin-ionomycin (PFI). Immediately following exercise, TXNIP protein decreased, but returned to pre-exercise levels three hours post exercise. These results were replicated in our PFI exercise model only. Although not statistically significant, there was a trending main effect in serine-phosphorylation status of TXNIP (p=0.07) immediately following exercise. REDD1 protein decreased three hours after exercise. AE had no effect on TRX protein expression, gene expression or the activity of its reducing enzyme, thioredoxin reductase. Consequently, AE had no effect on the TRX: TXNIP interaction. Our results indicate that AE leads to acute reductions in TXNIP and REDD1 protein expression. However, these changes did not result in alterations in the TRX: TXNIP interaction and could not be entirely explained by alterations in TXNIP PTMs or changes in TRX expression or activity.
    Keywords:  Physical Activity; Proteome; Redox; Signaling
    DOI:  https://doi.org/10.1152/japplphysiol.00229.2021
  29. Front Physiol. 2021 ;12 782695
      Inbred and genetically modified mice are frequently used to investigate the molecular mechanisms responsible for the beneficial adaptations to exercise training. However, published paradigms for exercise training in mice are variable, making comparisons across studies for training efficacy difficult. The purpose of this systematic review and meta-analysis was to characterize the diversity across published treadmill-based endurance exercise training protocols for mice and to identify training protocol parameters that moderate the adaptations to endurance exercise training in mice. Published studies were retrieved from PubMed and EMBASE and reviewed for the following inclusion criteria: inbred mice; inclusion of a sedentary group; and exercise training using a motorized treadmill. Fifty-eight articles met those inclusion criteria and also included a "classical" marker of training efficacy. Outcome measures included changes in exercise performance, V ˙ O2max, skeletal muscle oxidative enzyme activity, blood lactate levels, or exercise-induced cardiac hypertrophy. The majority of studies were conducted using male mice. Approximately 48% of studies included all information regarding exercise training protocol parameters. Meta-analysis was performed using 105 distinct training groups (i.e., EX-SED pairs). Exercise training had a significant effect on training outcomes, but with high heterogeneity (Hedges' g=1.70, 95% CI=1.47-1.94, Tau2=1.14, I2 =80.4%, prediction interval=-0.43-3.84). Heterogeneity was partially explained by subgroup differences in treadmill incline, training duration, exercise performance test type, and outcome variable. Subsequent analyses were performed on subsets of studies based on training outcome, exercise performance, or biochemical markers. Exercise training significantly improved performance outcomes (Hedges' g=1.85, 95% CI=1.55-2.15). Subgroup differences were observed for treadmill incline, training duration, and exercise performance test protocol on improvements in performance. Biochemical markers also changed significantly with training (Hedges' g=1.62, 95% CI=1.14-2.11). Subgroup differences were observed for strain, sex, exercise session time, and training duration. These results demonstrate there is a high degree of heterogeneity across exercise training studies in mice. Training duration had the most significant impact on training outcome. However, the magnitude of the effect of exercise training varies based on the marker used to assess training efficacy.
    Keywords:  endurance exercise training; inbred mice; sedentary; training responses; treadmill running
    DOI:  https://doi.org/10.3389/fphys.2021.782695
  30. Physiologia. 2021 Dec;1(1): 22-33
      Muscle protein synthesis and proteolysis are tightly coupled processes. Given that muscle growth is promoted by increases in net protein balance, it stands to reason that bolstering protein synthesis through amino acids while reducing or inhibiting proteolysis could be a synergistic strategy in enhancing anabolism. However, there is contradictory evidence suggesting that the proper functioning of proteolytic systems in muscle is required for homeostasis. To add clarity to this issue, we sought to determine if inhibiting different proteolytic systems in C2C12 myotubes in conjunction with acute and chronic leucine treatments affected markers of anabolism. In Experiment 1, myotubes underwent 1-h, 6-h, and 24-h treatments with serum and leucine-free DMEM containing the following compounds (n = 6 wells per treatment): (i) DMSO vehicle (CTL), (ii) 2 mM leucine + vehicle (Leu-only), (iii) 2 mM leucine + 40 μM MG132 (20S proteasome inhibitor) (Leu + MG132), (iv) 2 mM leucine + 50 μM calpeptin (calpain inhibitor) (Leu + CALP), and (v) 2 mM leucine + 1 μM 3-methyladenine (autophagy inhibitor) (Leu + 3MA). Protein synthesis levels significantly increased (p < 0.05) in the Leu-only and Leu + 3MA 6-h treatments compared to CTL, and levels were significantly lower in Leu + MG132 and Leu + CALP versus Leu-only and CTL. With 24-h treatments, total protein yield was significantly lower in Leu + MG132 cells versus other treatments. Additionally, the intracellular essential amino acid (EAA) pool was significantly greater in 24-h Leu + MG132 treatments versus other treatments. In a follow-up experiment, myotubes were treated for 48 h with CTL, Leu-only, and Leu + MG132 for morphological assessments. Results indicated Leu + MG132 yielded significantly smaller myotubes compared to CTL and Leu-only. Our data are limited in scope due to the utilization of select proteolysis inhibitors. However, this is the first evidence to suggest proteasome and calpain inhibition with MG132 and CALP, respectively, abrogate leucine-induced protein synthesis in myotubes. Additionally, longer-term Leu + MG132 treatments translated to an atrophy phenotype. Whether or not proteasome inhibition in vivo reduces leucine- or EAA-induced anabolism remains to be determined.
    Keywords:  leucine; muscle cells; muscle protein synthesis; proteasome
    DOI:  https://doi.org/10.3390/physiologia1010005
  31. Int J Mol Sci. 2021 Dec 19. pii: 13615. [Epub ahead of print]22(24):
      Investigations on ion channels in muscle tissues have mainly focused on physiological muscle function and related disorders, but emerging evidence supports a critical role of ion channels and transporters in developmental processes, such as controlling the myogenic commitment of stem cells. In this review, we provide an overview of ion channels and transporters that influence skeletal muscle myoblast differentiation, cardiac differentiation from pluripotent stem cells, as well as vascular smooth muscle cell differentiation. We highlight examples of model organisms or patients with mutations in ion channels. Furthermore, a potential underlying molecular mechanism involving hyperpolarization of the resting membrane potential and a series of calcium signaling is discussed.
    Keywords:  bioelectricity; calcium signaling; cardiac differentiation; membrane potential; myoblast differentiation; stem cells; vascular remodeling
    DOI:  https://doi.org/10.3390/ijms222413615
  32. J Cachexia Sarcopenia Muscle. 2021 Dec 23.
      Sarcopenia, or the age-related loss of skeletal muscle mass and function, is an increasingly prevalent condition that contributes to reduced quality of life, morbidity, and mortality in older adults. Older adults display blunted anabolic responses to otherwise anabolic stimuli-a phenomenon that has been termed anabolic resistance (AR)-which is likely a casual factor in sarcopenia development. AR is multifaceted, but historically much of the mechanistic focus has been on signalling impairments, and less focus has been placed on the role of the vasculature in postprandial protein kinetics. The vascular endothelium plays an indispensable role in regulating vascular tone and blood flow, and age-related impairments in vascular health may impede nutrient-stimulated vasodilation and subsequently the ability to deliver nutrients (e.g. amino acids) to skeletal muscle. Although the majority of data has been obtained studying younger adults, the relatively limited data on the effect of blood flow on protein kinetics in older adults suggest that vasodilatory function, especially of the microvasculature, strongly influences the muscle protein synthetic response to amino acid feedings. In this narrative review, we examine evidence of AR in older adults following amino acid and mixed meal consumption, examine the evidence linking vascular dysfunction and insulin resistance to age-related AR, review the influence of nitric oxide and endothelin-1 on age-related vascular dysfunction as it relates to AR, briefly review the potential causal role of arterial stiffness in promoting skeletal muscle microvascular dysfunction and AR, and provide a brief overview and future considerations for research examining age-related AR.
    Keywords:  Ageing; Anabolic resistance; Blood flow; Insulin; Muscle protein synthesis; Vasodilation
    DOI:  https://doi.org/10.1002/jcsm.12898
  33. Int J Environ Res Public Health. 2021 Dec 08. pii: 12949. [Epub ahead of print]18(24):
      Aging is characterized by several progressive physiological changes, including changes in the circadian rhythm. Circadian rhythms influence behavior, physiology, and metabolic processes in order to maintain homeostasis; they also influence the function of endothelial cells, smooth muscle cells, and immune cells in the vessel wall. A clock misalignment could favor vascular damage and indirectly also affect skeletal muscle function. In this review, we focus on the dysregulation of circadian rhythm due to aging and its relationship with skeletal muscle changes and vascular health as possible risk factors for the development of sarcopenia, as well as the role of physical exercise as a potential modulator of these processes.
    Keywords:  circadian rhythms; clock genes; inflammation; sarcopenia; skeletal muscle disfunction; vascular disfunction
    DOI:  https://doi.org/10.3390/ijerph182412949
  34. Sci Rep. 2021 Dec 20. 11(1): 24219
      Skeletal muscle plays an important role in glycaemic control and metabolic homeostasis, making it a tissue of interest with respect to type 2 diabetes mellitus. The aim of the present study was to determine if ligands of Toll-like receptors (TLRs) could have an impact on energy metabolism and myokine expression and secretion in cultured human skeletal muscle cells. The myotubes expressed mRNA for TLRs 1-6. TLR3, TLR4, TLR5 and TLR6 ligands (TLRLs) increased glucose metabolism. Furthermore, TLR4L and TLR5L increased oleic acid metabolism. The metabolic effects of TLRLs were not evident until after at least 24 h pre-incubation of the cells and here the metabolic effects were more evident for the metabolism of glucose than oleic acid, with a shift towards effects on oleic acid metabolism after chronic exposure (168 h). However, the stimulatory effect of TLRLs on myokine expression and secretion was detected after only 6 h, where TLR3-6L stimulated secretion of interleukin-6 (IL-6). TLR5L also increased secretion of interleukin-8 (IL-8), while TLR6L also increased secretion of granulocyte-macrophage colony stimulating factor (GM-CSF). Pre-incubation of the myotubes with IL-6 for 24 h increased oleic acid oxidation but had no effect on glucose metabolism. Thus IL-6 did not mimic all the metabolic effects of the TLRLs, implying metabolic effects beyond the actions of this myokine.
    DOI:  https://doi.org/10.1038/s41598-021-03730-w
  35. Int J Mol Sci. 2021 Dec 12. pii: 13352. [Epub ahead of print]22(24):
      It has been demonstrated that vascular endothelial growth factor B (VEGFB) plays a vital role in regulating vascular biological function. However, the role of VEGFB in regulating skeletal muscle cell proliferation and differentiation remains unclear. Thus, this study aimed to investigate the effects of VEGFB on C2C12 myoblast proliferation and differentiation and to explore the underlying mechanism. For proliferation, VEGFB significantly promoted the proliferation of C2C12 myoblasts with the upregulating expression of cyclin D1 and PCNA. Meanwhile, VEGFB enhanced vascular endothelial growth factor receptor 1 (VEGFR1) expression and activated the PI3K/Akt signaling pathway in a VEGFR1-dependent manner. In addition, the knockdown of VEGFR1 and inhibition of PI3K/Akt totally abolished the promotion of C2C12 proliferation induced by VEGFB, suggesting that VEGFB promoted C2C12 myoblast proliferation through the VEGFR1-PI3K/Akt signaling pathway. Regarding differentiation, VEGFB significantly stimulated the differentiation of C2C12 myoblasts via VEGFR, with elevated expressions of MyoG and MyHC. Furthermore, the knockdown of VEGFR1 rather than NRP1 eliminated the VEGFB-stimulated C2C12 differentiation. Moreover, VEGFB activated the PI3K/Akt/mTOR signaling pathway in a VEGFR1-dependent manner. However, the inhibition of PI3K/Akt/mTOR blocked the promotion of C2C12 myoblasts differentiation induced by VEGFB, indicating the involvement of the PI3K/Akt pathway. To conclude, these findings showed that VEGFB promoted C2C12 myoblast proliferation and differentiation via the VEGFR1-PI3K/Akt signaling pathway, providing new insights into the regulation of skeletal muscle development.
    Keywords:  C2C12; PI3K/Akt; VEGFB; VEGFR1; differentiation; proliferation
    DOI:  https://doi.org/10.3390/ijms222413352
  36. Nucleic Acids Res. 2021 Dec 21. pii: gkab1137. [Epub ahead of print]
      Histone H3mm18 is a non-allelic H3 variant expressed in skeletal muscle and brain in mice. However, its function has remained enigmatic. We found that H3mm18 is incorporated into chromatin in cells with low efficiency, as compared to H3.3. We determined the structures of the nucleosome core particle (NCP) containing H3mm18 by cryo-electron microscopy, which revealed that the entry/exit DNA regions are drastically disordered in the H3mm18 NCP. Consistently, the H3mm18 NCP is substantially unstable in vitro. The forced expression of H3mm18 in mouse myoblast C2C12 cells markedly suppressed muscle differentiation. A transcriptome analysis revealed that the forced expression of H3mm18 affected the expression of multiple genes, and suppressed a group of genes involved in muscle development. These results suggest a novel gene expression regulation system in which the chromatin landscape is altered by the formation of unusual nucleosomes with a histone variant, H3mm18, and provide important insight into understanding transcription regulation by chromatin.
    DOI:  https://doi.org/10.1093/nar/gkab1137
  37. Life (Basel). 2021 Dec 14. pii: 1398. [Epub ahead of print]11(12):
      Matrix metalloproteinases (MMPs) have been implicated in the progression of muscular dystrophy, and recent studies have reported the role of MMP-10 in skeletal muscle pathology of young dystrophic mice. Nevertheless, its involvement in dystrophin-deficient hearts remains unexplored. Here, we aimed to investigate the involvement of MMP-10 in the progression of severe muscular dystrophy and to characterize MMP-10 loss in skeletal and cardiac muscles of aged dystrophic mice. We examined the histopathological effect of MMP-10 ablation in aged mdx mice, both in the hind limb muscles and heart tissues. We found that MMP-10 loss compromises survival rates of aged mdx mice, with skeletal and cardiac muscles developing a chronic inflammatory response. Our findings indicate that MMP-10 is implicated in severe muscular dystrophy progression, thus identifying a new area of research that could lead to future therapies for dystrophic muscles.
    Keywords:  cardiac muscle; matrix metalloproteinases; muscular dystrophy; skeletal muscle
    DOI:  https://doi.org/10.3390/life11121398
  38. Cells. 2021 Dec 04. pii: 3418. [Epub ahead of print]10(12):
      The somatotropic axis is required for a number of biological processes, including growth, metabolism, and aging. Due to its central effects on growth and metabolism and with respect to its positive effects on muscle mass, regulation of the GH/IGF-system during endurance exercise is of particular interest. In order to study the control of gene expression and adaptation related to physical performance, we used a non-inbred mouse model, phenotype-selected for high running performance (DUhTP). Gene expression of the GH/IGF-system and related signaling cascades were studied in the pituitary gland and muscle of sedentary males of marathon and unselected control mice. In addition, the effects of three weeks of endurance exercise were assessed in both genetic groups. In pituitary glands from DUhTP mice, reduced expression of Pou1f1 (p = 0.002) was accompanied by non-significant reductions of Gh mRNA (p = 0.066). In addition, mRNA expression of Ghsr and Sstr2 were significantly reduced in the pituitary glands from DUhTP mice (p ≤ 0.05). Central downregulation of Pou1f1 expression was accompanied by reduced serum concentrations of IGF1 and coordinated downregulation of multiple GH/IGF-signaling compounds in muscle (e.g., Ghr, Igf1, Igf1r, Igf2r, Irs1, Irs2, Akt3, Gskb, Pik3ca/b/a2, Pten, Rictor, Rptor, Tsc1, Mtor; p ≤ 0.05). In response to exercise, the expression of Igfbp3, Igfbp 4, and Igfbp 6 and Stc2 mRNA was increased in the muscle of DUhTP mice (p ≤ 0.05). Training-induced specific activation of AKT, S6K, and p38 MAPK was found in muscles from control mice but not in DUhTP mice (p ≤ 0.05), indicating a lack of mTORC1 and mTORC2 activation in marathon mice in response to physical exercise. While hormone-dependent mTORC1 and mTORC2 pathways in marathon mice were repressed, robust increases of Ragulator complex compounds (p ≤ 0.001) and elevated sirtuin 2 to 6 mRNA expression were observed in the DUhTP marathon mouse model (p ≤ 0.05). Activation of AMPK was not observed under the experimental conditions of the present study. Our results describe coordinated downregulation of the somatotropic pathway in long-term selected marathon mice (DUhTP), possibly via the pituitary gland and muscle interaction. Our results, for the first time, demonstrate that GH/IGF effects are repressed in a context of superior running performance in mice.
    Keywords:  PTEN; Ragulator complex; endurance exercise; energy metabolism; growth hormone; insulin-like growth factor; mTORC; mouse model; muscle; pituitary gland; sirtuins
    DOI:  https://doi.org/10.3390/cells10123418