bims-moremu Biomed News
on Molecular regulators of muscle mass
Issue of 2021–05–09
forty-two papers selected by
Anna Vainshtein, Craft Science Inc.



  1. Sci Rep. 2021 May 03. 11(1): 9423
      Skeletal muscle has a remarkable capacity of regeneration after injury, but the regulatory network underlying this repair process remains elusive. RNA-binding proteins play key roles in the post-transcriptional regulation of gene expression and the maintenance of tissue homeostasis and plasticity. Rbm24 regulates myogenic differentiation during early development, but its implication in adult muscle is poorly understood. Here we show that it exerts multiple functions in muscle regeneration. Consistent with its dynamic subcellular localization during embryonic muscle development, Rbm24 also displays cytoplasm to nucleus translocation during C2C12 myoblast differentiation. In adult mice, Rbm24 mRNA is enriched in slow-twitch muscles along with myogenin mRNA. The protein displays nuclear localization in both slow and fast myofibers. Upon injury, Rbm24 is rapidly upregulated in regenerating myofibers and accumulates in the myonucleus of nascent myofibers. Through satellite cell transplantation, we demonstrate that Rbm24 functions sequentially to regulate myogenic differentiation and muscle regeneration. It is required for myogenin expression at early stages of muscle injury and for muscle-specific pre-mRNA alternative splicing at late stages of regeneration. These results identify Rbm24 as a multifaceted regulator of myoblast differentiation. They provide insights into the molecular pathway orchestrating the expression of myogenic factors and muscle functional proteins during regeneration.
    DOI:  https://doi.org/10.1038/s41598-021-88563-3
  2. Exp Physiol. 2021 May 07.
       NEW FINDINGS: What is the central question of this study? Striated Muscle activator of Rho signalling (STARS) is an actin-binding protein that regulates transcriptional pathways controlling muscle function, growth and myogenesis; processes impaired in dystrophic muscle. Regulation of the STARS pathway in Duchenne muscular dystrophy (DMD is unknown. What is the main finding and its importance? Members of the STARS signalling pathway are reduced in the quadriceps of patients with DMD and in mouse models of muscular dystrophy. Overexpression of STARS in the dystrophic deficient mdx mouse model increased maximal isometric specific force and upregulated members of the actin cytoskeleton and oxidative phosphorylation (OXPHOS) pathways. Regulating STARS may be a therapeutic approach to enhance muscle health.
    ABSTRACT: Duchenne muscular dystrophy (DMD) is characterized by impaired cytoskeleton organization, cytosolic calcium handling, oxidative stress and mitochondrial dysfunction. This results in progressive muscle damage, wasting and weakness and premature death. The Striated Muscle activator of Rho signalling (STARS) is an actin-binding protein that activates the myocardin-related transcription factor-A (MRTFA)/serum response factor (SRF) transcriptional pathway; a pathway regulating cytoskeletal structure and muscle function, growth and repair. We investigated the regulation of the STARS pathway in the quadriceps muscle from patients with DMD and in the tibialis anterior (TA) muscle from the dystrophin-deficient mdx and dko (utrophin and dystrophin null) mice. Protein levels of STARS, SRF and RHOA were reduced in patients with DMD. STARS, SRF and MRTFA mRNA levels were also decreased in DMD muscle, while Stars mRNA levels were decreased in the mdx mice and Srf and Mrtfa mRNAs decreased in the dko mice. Overexpressing human STARS (hSTARS) in the TA muscles of mdx mice increased maximal isometric specific force by 13% (p<0.05). This was not associated with changes in muscle mass, fibre cross-sectional area (CSA), fibre type, centralised nuclei or collagen deposition. Proteomics screening, followed by pathway enrichment analysis, identified that hSTARS overexpression resulted in 31 upregulated and 22 downregulated proteins belonging to the actin cytoskeleton and oxidative phosphorylation (OXPHOS) pathways. These pathways are impaired in dystrophic muscle and regulate processes that are vital for muscle function. Increasing the STARS protein in dystrophic muscle improves muscle force production, potentially via synergistic regulation of cytoskeletal structure and energy production. This article is protected by copyright. All rights reserved.
    Keywords:  STARS; actin cytoskeleton; adeno-associated virus; mdx mouse; muscular dystrophy; oxidative phosphorylation; skeletal muscle
    DOI:  https://doi.org/10.1113/EP089253
  3. J Cachexia Sarcopenia Muscle. 2021 May 05.
       BACKGROUND: Skeletal muscle atrophy manifests across numerous diseases; however, the extent of similarities/differences in causal mechanisms between atrophying conditions in unclear. Ageing and disuse represent two of the most prevalent and costly atrophic conditions, with resistance exercise training (RET) being the most effective lifestyle countermeasure. We employed gene-level and network-level meta-analyses to contrast transcriptomic signatures of disuse and RET, plus young and older RET to establish a consensus on the molecular features of, and therapeutic targets against, muscle atrophy in conditions of high socio-economic relevance.
    METHODS: Integrated gene-level and network-level meta-analysis was performed on publicly available microarray data sets generated from young (18-35 years) m. vastus lateralis muscle subjected to disuse (unilateral limb immobilization or bed rest) lasting ≥7 days or RET lasting ≥3 weeks, and resistance-trained older (≥60 years) muscle.
    RESULTS: Disuse and RET displayed predominantly separate transcriptional responses, and transcripts altered across conditions were mostly unidirectional. However, disuse and RET induced directly inverted expression profiles for mitochondrial function and translation regulation genes, with COX4I1, ENDOG, GOT2, MRPL12, and NDUFV2, the central hub components of altered mitochondrial networks, and ZMYND11, a hub gene of altered translation regulation. A substantial number of genes (n = 140) up-regulated post-RET in younger muscle were not similarly up-regulated in older muscle, with young muscle displaying a more pronounced extracellular matrix (ECM) and immune/inflammatory gene expression response. Both young and older muscle exhibited similar RET-induced ubiquitination/RNA processing gene signatures with associated PWP1, PSMB1, and RAF1 hub genes.
    CONCLUSIONS: Despite limited opposing gene profiles, transcriptional signatures of disuse are not simply the converse of RET. Thus, the mechanisms of unloading cannot be derived from studying muscle loading alone and provides a molecular basis for understanding why RET fails to target all transcriptional features of disuse. Loss of RET-induced ECM mechanotransduction and inflammatory profiles might also contribute to suboptimal ageing muscle adaptations to RET. Disuse and age-dependent molecular candidates further establish a framework for understanding and treating disuse/ageing atrophy.
    Keywords:  Ageing; Gene-level analysis; Network analysis; Resistance exercise training; Skeletal muscle disuse; Transcriptomic meta-analysis
    DOI:  https://doi.org/10.1002/jcsm.12706
  4. J Cachexia Sarcopenia Muscle. 2021 May 06.
       BACKGROUND: Satellite cells (SCs) are critical to skeletal muscle regeneration. Inactivation of SCs is linked to skeletal muscle loss. Transferrin receptor 1 (Tfr1) is associated with muscular dysfunction as muscle-specific deletion of Tfr1 results in growth retardation, metabolic disorder, and lethality, shedding light on the importance of Tfr1 in muscle physiology. However, its physiological function regarding skeletal muscle ageing and regeneration remains unexplored.
    METHODS: RNA sequencing is applied to skeletal muscles of different ages to identify Tfr1 associated to skeletal muscle ageing. Mice with conditional SC ablation of Tfr1 were generated. Between Tfr1SC/WT and Tfr1SC/KO (n = 6-8 mice per group), cardiotoxin was intramuscularly injected, and transverse abdominal muscle was dissected, weighted, and cryosectioned, followed by immunostaining, haematoxylin and eosin staining, and Masson staining. These phenotypical analyses were followed with functional analysis such as flow cytometry, tread mill, Prussian blue staining, and transmission electron microscopy to identify pathological pathways that contribute to regeneration defects.
    RESULTS: By comparing gene expression between young (2 weeks old, n = 3) and aged (80 weeks old, n = 3) mice among four types of muscles, we identified that Tfr1 expression is declined in muscles of aged mice (~80% reduction, P < 0.005), so as to its protein level in SCs of aged mice. From in vivo and ex vivo experiments, Tfr1 deletion in SCs results in an irreversible depletion of SCs (~60% reduction, P < 0.005) and cell-autonomous defect in SC proliferation and differentiation, leading to skeletal muscle regeneration impairment, followed by labile iron accumulation, lipogenesis, and decreased Gpx4 and Nrf2 protein levels leading to reactive oxygen species scavenger defects. These abnormal phenomena including iron accumulation, activation of unsaturated fatty acid biosynthesis, and lipid peroxidation are orchestrated with the occurrence of ferroptosis in skeletal muscle. Ferroptosis further exacerbates SC proliferation and skeletal muscle regeneration. Ferrostatin-1, a ferroptosis inhibitor, could not rescue ferroptosis. However, intramuscular administration of lentivirus-expressing Tfr1 could partially reduce labile iron accumulation, decrease lipogenesis, and promote skeletal muscle regeneration. Most importantly, declined Tfr1 but increased Slc39a14 protein level on cellular membrane contributes to labile iron accumulation in skeletal muscle of aged rodents (~80 weeks old), leading to activation of ferroptosis in aged skeletal muscle. This is inhibited by ferrostatin-1 to improve running time (P = 0.0257) and distance (P = 0.0248).
    CONCLUSIONS: Satellite cell-specific deletion of Tfr1 impairs skeletal muscle regeneration with activation of ferroptosis. This phenomenon is recapitulated in skeletal muscle of aged rodents and human sarcopenia. Our study provides mechanistic information for developing novel therapeutic strategies against muscular ageing and diseases.
    Keywords:  Ferroptosis; Fibro/adipogenic progenitors; Satellite cells; Tfr1
    DOI:  https://doi.org/10.1002/jcsm.12700
  5. Front Physiol. 2021 ;12 673404
      Normal skeletal muscle functions are affected following trauma, chronic diseases, inherited neuromuscular disorders, aging, and cachexia, hampering the daily activities and quality of life of the affected patients. The maladaptive accumulation of fibrous intramuscular connective tissue and fat are hallmarks of multiple pathologies where chronic damage and inflammation are not resolved, leading to progressive muscle replacement and tissue degeneration. Muscle-resident fibro-adipogenic progenitors are adaptable stromal cells with multilineage potential. They are required for muscle homeostasis, neuromuscular integrity, and tissue regeneration. Fibro-adipogenic progenitors actively regulate and shape the extracellular matrix and exert immunomodulatory functions via cross-talk with multiple other residents and non-resident muscle cells. Remarkably, cumulative evidence shows that a significant proportion of activated fibroblasts, adipocytes, and bone-cartilage cells, found after muscle trauma and disease, descend from these enigmatic interstitial progenitors. Despite the profound impact of muscle disease on human health, the fibrous, fatty, and ectopic bone tissues' origins are poorly understood. Here, we review the current knowledge of fibro-adipogenic progenitor function on muscle homeostatic integrity, regeneration, repair, and aging. We also discuss how scar-forming pathologies and disorders lead to dysregulations in their behavior and plasticity and how these stromal cells can control the onset and severity of muscle loss in disease. We finally explore the rationale of improving muscle regeneration by understanding and modulating fibro-adipogenic progenitors' fate and behavior.
    Keywords:  aging; duchenne muscular dystrophy (DMD); extracellular matrix (ECM); macrophages; muscle FAPs; muscle regeneration; muscle stem cells (MuSCs); skeletal muscle fibrosis
    DOI:  https://doi.org/10.3389/fphys.2021.673404
  6. Cell Stem Cell. 2021 Apr 27. pii: S1934-5909(21)00165-X. [Epub ahead of print]
      Intramuscular fatty deposits, which are seen in muscular dystrophies and with aging, negatively affect muscle function. The cells of origin of adipocytes constituting these fatty deposits are mesenchymal stromal cells, fibroadipogenic progenitors (FAPs). We uncover a molecular fate switch, involving miR-206 and the transcription factor Runx1, that controls FAP differentiation to adipocytes. Mice deficient in miR-206 exhibit increased adipogenesis following muscle injury. Adipogenic differentiation of FAPs is abrogated by miR-206 mimics. Using a labeled microRNA (miRNA) pull-down and sequencing (LAMP-seq), we identified Runx1 as a miR-206 target, with miR-206 repressing Runx1 translation. In the absence of miR-206 in FAPs, Runx1 occupancy near transcriptional start sites of adipogenic genes and expression of these genes increase. We demonstrate that miR-206 mimicry in vivo limits intramuscular fatty infiltration. Our results provide insight into the underlying molecular mechanisms of FAP fate determination and formation of harmful fatty deposits in skeletal muscle.
    Keywords:  adipogenesis; aging; cell fate determination; fatty infiltration; fibroadipogenic progenitor; mesenchymal stromal cell; muscular dystrophy; skeletal muscle; stem cell
    DOI:  https://doi.org/10.1016/j.stem.2021.04.008
  7. Mech Ageing Dev. 2021 Apr 28. pii: S0047-6374(21)00067-1. [Epub ahead of print]196 111495
      Protein acylation via metabolic acyl-CoA intermediates provides a link between cellular metabolism and protein functionality. A process in which acetyl-CoA and acetylation are fine-tuned is during myogenic differentiation. However, the roles of other protein acylations remain unknown. Protein propionylation could be functionally relevant because propionyl-CoA can be derived from the catabolism of amino acids and fatty acids and was shown to decrease during muscle differentiation. We aimed to explore the potential role of protein propionylation in muscle differentiation, by mimicking a pathophysiological situation with high extracellular propionate which increases propionyl-CoA and protein propionylation, rendering it a model to study increased protein propionylation. Exposure to extracellular propionate, but not acetate, impaired myogenic differentiation in C2C12 cells and propionate exposure impaired myogenic differentiation in primary human muscle cells. Impaired differentiation was accompanied by an increase in histone propionylation as well as histone acetylation. Furthermore, chromatin immunoprecipitation showed increased histone propionylation at specific regulatory myogenic differentiation sites of the Myod gene. Intramuscular propionylcarnitine levels are higher in old compared to young males and females, possibly indicating increased propionyl-CoA levels with age. The findings suggest a role for propionylation and propionyl-CoA in regulation of muscle cell differentiation and ageing, possibly via alterations in histone acylation.
    Keywords:  Aging; Histone acylation; Propionylation; Skeletal muscle differentiation
    DOI:  https://doi.org/10.1016/j.mad.2021.111495
  8. Biochem Biophys Res Commun. 2021 Apr 29. pii: S0006-291X(21)00704-X. [Epub ahead of print]559 84-91
      Skeletal muscle development is a sophisticated multistep process orchestrated by diverse myogenic transcription factors. Recent studies have suggested that Kelch-like genes play vital roles in muscle disease and myogenesis. However, it is still unclear how Kelch-like genes impact myoblast physiology. Here, through integrative analysis of the mRNA expression profile during chicken primary myoblast and C2C12 differentiation, many differentially expressed genes were found and suggested to be enriched in myoblast differentiation and muscle development. Interestingly, a little-known Kelch-like gene KLHL30 was screened as skeletal muscle-specific gene with essential roles in myogenic differentiation. Transcriptomic data and quantitative PCR analysis indicated that the expression of KLHL30 is upregulated under myoblast differentiation state. KLHL30 overexpression upregulated the protein expression of myogenic transcription factors (MYOD, MYOG, MEF2C) and induced myoblast differentiation and myotube formation, while knockdown of KLHL30 caused the opposite effect. Furthermore, KLHL30 was found to significantly decrease the numbers of cells in the S stage and thereby depress myoblast proliferation. Collectively, this study highlights that KLHL30 as a muscle-specific regulator plays essential roles in myoblast proliferation and differentiation.
    Keywords:  Differentially expressed genes; Differentiation; KLHL30; Myoblast; Myogenesis; Proliferation
    DOI:  https://doi.org/10.1016/j.bbrc.2021.04.086
  9. Mol Nutr Food Res. 2021 May 01. e2000652
       SCOPE: γ-Oryzanol, a well-known antioxidant, has been used by body builders and athletes to boost strength and increase muscle gain, without major side effects. However, the effect of γ-oryzanol on sarcopenia and the underlying molecular mechanism is poorly understood.
    RESULTS: Aged mice fed with the γ-oryzanol diet did not show significant changes in muscle weight, but showed increased running endurance as well as improved grip strength. The expression and activity of PPARδ and ERRγ were increased in skeletal muscle of γ-oryzanol supplemented mice. γ-Oryzanol upregulated oxidative muscle fibers by MEF2 transcription factor, and PGC-1α and ERRα expressions. Fatty acid oxidation related genes and mitochondria biogenesis were upregulated by γ-oryzanol. In addition, γ-oryzanol inhibited TGF-β-Smad-NADPH oxidase 4 pathway and inflammatory cytokines such as TNF-α, IL-1β, and IL-6, and p65 NF-κB subunit, which cause skeletal muscle weakness. Collectively, γ-oryzanol attenuates muscle weakness pathway and increases oxidative capacity by increasing PPARδ and ERRγ activity, which contribute to enhance strength and improve oxidative capacity in muscles, consequently enhancing exercise capacity in aged mice. Particularly, γ-oryzanol directly bind to PPARδ.
    CONCLUSIONS: These are the first findings showing that γ-oryzanol enhances skeletal muscle function in aged mice by regulating PPARδ and ERRγ activity without muscle gain. This article is protected by copyright. All rights reserved.
    Keywords:  ERRγ; PPARδ; aged mice; skeletal muscle function; γ-Oryzanol
    DOI:  https://doi.org/10.1002/mnfr.202000652
  10. iScience. 2021 Apr 23. 24(4): 102372
      Using in vivo muscle stem cell (satellite cell)-specific extracellular vesicle (EV) tracking, satellite cell depletion, in vitro cell culture, and single-cell RNA sequencing, we show satellite cells communicate with other cells in skeletal muscle during mechanical overload. Early satellite cell EV communication primes the muscle milieu for proper long-term extracellular matrix (ECM) deposition and is sufficient to support sustained hypertrophy in adult mice, even in the absence of fusion to muscle fibers. Satellite cells modulate chemokine gene expression across cell types within the first few days of loading, and EV delivery of miR-206 to fibrogenic cells represses Wisp1 expression required for appropriate ECM remodeling. Late-stage communication from myogenic cells during loading is widespread but may be targeted toward endothelial cells. Satellite cells coordinate adaptation by influencing the phenotype of recipient cells, which extends our understanding of their role in muscle adaptation beyond regeneration and myonuclear donation.
    Keywords:  Cell Biology; Functional Aspects of Cell Biology
    DOI:  https://doi.org/10.1016/j.isci.2021.102372
  11. Cells. 2021 Apr 29. pii: 1054. [Epub ahead of print]10(5):
      Sarcopenia is the loss of both muscle mass and function with age. Although the molecular underpinnings of sarcopenia are not fully understood, numerous pathways are implicated, including autophagy, in which defective cargo is selectively identified and degraded at the lysosome. The specific tagging and degradation of mitochondria is termed mitophagy, a process important for the maintenance of an organelle pool that functions efficiently in energy production and with relatively low reactive oxygen species production. Emerging data, yet insufficient, have implicated various steps in this pathway as potential contributors to the aging muscle atrophy phenotype. Included in this is the lysosome, the end-stage organelle possessing a host of proteolytic and degradative enzymes, and a function devoted to the hydrolysis and breakdown of defective molecular complexes and organelles. This review provides a summary of our current understanding of how the autophagy-lysosome system is regulated in aging muscle, highlighting specific areas where knowledge gaps exist. Characterization of the autophagy pathway with a particular focus on the lysosome will undoubtedly pave the way for the development of novel therapeutic strategies to combat age-related muscle loss.
    Keywords:  aging; autophagy; lysosomes; mitophagy; sarcopenia; skeletal muscle
    DOI:  https://doi.org/10.3390/cells10051054
  12. Front Physiol. 2021 ;12 660498
      Vitamin D is an essential nutrient for the maintenance of skeletal muscle and bone health. The vitamin D receptor (VDR) is present in muscle, as is CYP27B1, the enzyme that hydroxylates 25(OH)D to its active form, 1,25(OH)D. Furthermore, mounting evidence suggests that vitamin D may play an important role during muscle damage and regeneration. Muscle damage is characterized by compromised muscle fiber architecture, disruption of contractile protein integrity, and mitochondrial dysfunction. Muscle regeneration is a complex process that involves restoration of mitochondrial function and activation of satellite cells (SC), the resident skeletal muscle stem cells. VDR expression is strongly upregulated following injury, particularly in central nuclei and SCs in animal models of muscle injury. Mechanistic studies provide some insight into the possible role of vitamin D activity in injured muscle. In vitro and in vivo rodent studies show that vitamin D mitigates reactive oxygen species (ROS) production, augments antioxidant capacity, and prevents oxidative stress, a common antagonist in muscle damage. Additionally, VDR knockdown results in decreased mitochondrial oxidative capacity and ATP production, suggesting that vitamin D is crucial for mitochondrial oxidative phosphorylation capacity; an important driver of muscle regeneration. Vitamin D regulation of mitochondrial health may also have implications for SC activity and self-renewal capacity, which could further affect muscle regeneration. However, the optimal timing, form and dose of vitamin D, as well as the mechanism by which vitamin D contributes to maintenance and restoration of muscle strength following injury, have not been determined. More research is needed to determine mechanistic action of 1,25(OH)D on mitochondria and SCs, as well as how this action manifests following muscle injury in vivo. Moreover, standardization in vitamin D sufficiency cut-points, time-course study of the efficacy of vitamin D administration, and comparison of multiple analogs of vitamin D are necessary to elucidate the potential of vitamin D as a significant contributor to muscle regeneration following injury. Here we will review the contribution of vitamin D to skeletal muscle regeneration following injury.
    Keywords:  25(OH)D; calcitriol; reactive oxygen species; satellite cells; skeletal muscle injury; skeletal muscle regeneration; vitamin D; vitamin D receptor
    DOI:  https://doi.org/10.3389/fphys.2021.660498
  13. Sci Rep. 2021 May 07. 11(1): 9788
      Chronic kidney disease (CKD) leads to musculoskeletal impairments that are impacted by muscle metabolism. We tested the hypothesis that 10-weeks of voluntary wheel running can improve skeletal muscle mitochondria activity and function in a rat model of CKD. Groups included (n = 12-14/group): (1) normal littermates (NL); (2) CKD, and; (3) CKD-10 weeks of voluntary wheel running (CKD-W). At 35-weeks old the following assays were performed in the soleus and extensor digitorum longus (EDL): targeted metabolomics, mitochondrial respiration, and protein expression. Amino acid-related compounds were reduced in CKD muscle and not restored by physical activity. Mitochondrial respiration in the CKD soleus was increased compared to NL, but not impacted by physical activity. The EDL respiration was not different between NL and CKD, but increased in CKD-wheel rats compared to CKD and NL groups. Our results demonstrate that the soleus may be more susceptible to CKD-induced changes of mitochondrial complex content and respiration, while in the EDL, these alterations were in response the physiological load induced by mild physical activity. Future studies should focus on therapies to improve mitochondrial function in both types of muscle to determine if such treatments can improve the ability to adapt to physical activity in CKD.
    DOI:  https://doi.org/10.1038/s41598-021-89120-8
  14. J Cell Mol Med. 2021 May 04.
      Myogenesis, the process of skeletal muscle formation, is a highly coordinated multistep biological process. Accumulating evidence suggests that long non-coding RNAs (lncRNAs) are emerging as a gatekeeper in myogenesis. Up to now, most studies on muscle development-related lncRNAs are mainly focussed on humans and mice. In this study, a novel muscle highly expressed lncRNA, named lnc23, localized in nucleus, was found differentially expressed in different stages of embryonic development and myogenic differentiation. The knockdown and over-expression experiments showed that lnc23 positively regulated the myogenic differentiation of bovine skeletal muscle satellite cells. Then, TMT 10-plex labelling quantitative proteomics was performed to screen the potentially regulatory proteins of lnc23. Results indicated that lnc23 was involved in the key processes of myogenic differentiation such as cell fusion, further demonstrated that down-regulation of lnc23 may inhibit myogenic differentiation by reducing signal transduction and cell fusion among cells. Furthermore, RNA pulldown/LC-MS and RIP experiment illustrated that PFN1 was a binding protein of lnc23. Further, we also found that lnc23 positively regulated the protein expression of RhoA and Rac1, and PFN1 may negatively regulate myogenic differentiation and the expression of its interacting proteins RhoA and Rac1. Hence, we support that lnc23 may reduce the inhibiting effect of PFN1 on RhoA and Rac1 by binding to PFN1, thereby promoting myogenic differentiation. In short, the novel identified lnc23 promotes myogenesis of bovine skeletal muscle satellite cells via PFN1-RhoA/Rac1.
    Keywords:  PFN1; bovine; lnc23; myogenesis; skeletal muscle satellite cells
    DOI:  https://doi.org/10.1111/jcmm.16427
  15. Front Pharmacol. 2021 ;12 646489
      Muscle dysfunction is a complication of high-fat diet (HFD)-induced obesity that could be prevented by exercise, but patients did not get enough therapeutic efficacy from exercise due to multiple reasons. To explore alternative or supplementary approaches to prevent or treat muscle dysfunction in individuals with obesity, we investigated the effects of Rhodiola on muscle dysfunction as exercise pills. SIRT1 might suppress atrogenes expression and improve mitochondrial quality control, which could be a therapeutic target stimulated by exercise and Rhodiola, but further mechanisms remain unclear. We verified the lipid metabolism disorders and skeletal muscle dysfunction in HFD feeding mice. Moreover, exercise and Rhodiola were used to intervene mice with a HFD. Our results showed that exercise and Rhodiola prevented muscle atrophy and dysfunction in obese mice and activating the SIRT1 pathway, while atrogenes were suppressed and mitochondrial quality control was improved. EX-527, SIRT1 inhibitor, was used to validate the essential role of SIRT1 in salidroside benefit. Results of cell culture experiment showed that salidroside alleviated high palmitate-induced atrophy and mitochondrial quality control impairments, but these improvements of salidroside were inhibited by EX-527 in C2C12 myotubes. Overall, Rhodiola mimics exercise that activates SIRT1 signaling leading to improvement of HFD-induced muscle dysfunction.
    Keywords:  SIRT1; atrogenes; mitochondrion; rhodiola; salidroside
    DOI:  https://doi.org/10.3389/fphar.2021.646489
  16. J Physiol. 2021 May 07.
      Metabolic health is a crucial area of current research, and is an outcome of innate physiology, and interactions with the environment. Environmental cues, such as the Earth's day-night rhythm, partly regulate diurnal hormones and metabolites. Circadian physiology consists of highly conserved biological processes over ∼24-hour cycles, which are influenced by external cues (Zeitgebers - "time-keepers"). Skeletal muscle has diurnal variations of a large magnitude, owing in part to the strong nature of physical activity throughout the day and other external Zeitgebers. The orchestration of whole-body, and skeletal muscle metabolism is a complex, finely-tuned process, and molecular diurnal variations are regulated by a transcription-translation feedback loop controlled by the molecular clock, as well as non-transcriptional metabolic processes. The mitochondrion may play an important role in regulating diurnal metabolites within skeletal muscle, given its central role in the regulation of NAD+ /NADH, O2, reactive oxygen species and redox metabolism. These molecular pathways display diurnal variation and illustrate the complex orchestration of circadian metabolism in skeletal muscle. Probably the most robust Zeitgeber of skeletal muscle is exercise, which alters glucose metabolism and flux, in addition to a range of other diurnal metabolic pathways. Indeed, performing exercise at different times of the day may alter metabolism and health outcomes in some cohorts. The objective of this Symposium Review is to briefly cover the current literature, and to speculate regarding future areas of research. Thus, we postulate that metabolic health may be optimized by altering the timing of external cues such as diet and exercise. This article is protected by copyright. All rights reserved.
    Keywords:   
    DOI:  https://doi.org/10.1113/JP280884
  17. Semin Cell Dev Biol. 2021 Apr 30. pii: S1084-9521(21)00090-2. [Epub ahead of print]
      Human pluripotent stem cells (PSCs), which have the capacity to self-renew and differentiate into multiple cell types, offer tremendous therapeutic potential and invaluable flexibility as research tools. Recently, remarkable progress has been made in directing myogenic differentiation of human PSCs. The differentiation strategies, which were inspired by our knowledge of myogenesis in vivo, have provided an important platform for the study of human muscle development and modeling of muscular diseases, as well as a promising source of cells for cell therapy to treat muscular dystrophies. In this review, we summarize the current state of skeletal muscle generation from human PSCs, including transgene-based and transgene-free differentiation protocols, and 3D muscle tissue production through bioengineering approaches. We also highlight their basic and clinical applications, which facilitate the study of human muscle biology and deliver new hope for muscular disease treatment.
    Keywords:  Human pluripotent stem cells (PSCs); Muscular dystrophy; Myogenesis; Satellite cells; Skeletal muscle; Tissue engineering
    DOI:  https://doi.org/10.1016/j.semcdb.2021.04.017
  18. Cell Rep. 2021 May 04. pii: S2211-1247(21)00420-4. [Epub ahead of print]35(5): 109087
      Parvalbumin (PV) is a cytosolic Ca2+-binding protein highly expressed in fast skeletal muscle, contributing to an increased relaxation rate. Moreover, PV is an "atrogene" downregulated in most muscle atrophy conditions. Here, we exploit mice lacking PV to explore the link between the two PV functions. Surprisingly, PV ablation partially counteracts muscle loss after denervation. Furthermore, acute PV downregulation is accompanied by hypertrophy and upregulation by atrophy. PV ablation has a minor impact on sarcoplasmic reticulum but is associated with increased mitochondrial Ca2+ uptake, mitochondrial size and number, and contacts with Ca2+ release sites. Mitochondrial calcium uniporter (MCU) silencing abolishes the hypertrophic effect of PV ablation, suggesting that mitochondrial Ca2+ uptake is required for hypertrophy. In turn, an increase of mitochondrial Ca2+ is required to enhance expression of the pro-hypertrophy gene PGC-1α4, whose silencing blocks hypertrophy due to PV ablation. These results reveal how PV links cytosolic Ca2+ control to mitochondrial adaptations, leading to muscle mass regulation.
    Keywords:  calcium buffer; mitochondria; skeletal muscle
    DOI:  https://doi.org/10.1016/j.celrep.2021.109087
  19. Exp Physiol. 2021 May 07.
       NEW FINDINGS: What is the central question of this study? Description and testing of a custom-designed multiplex gene expression assay to quantitate expression levels of a targeted group of mitochondrial genes in human skeletal muscle. What is the main finding and its importance? This study describes the development of a custom-designed GeXP multiplex assay and demonstrates the ability to accurately quantitate expression of a targeted set of mitochondrial genes in human skeletal muscle, while holding distinct methodological and practical advantages over other commonly used quantitation methods.
    ABSTRACT: Skeletal muscle is an important endocrine tissue demonstrating plasticity in response to external stimuli, including exercise and nutrition. Mitochondrial biogenesis is a common hallmark of adaptations to aerobic exercise training. Furthermore, altered expression of several genes implicated in the regulation of mitochondrial biogenesis, substrate oxidation and nicotinamide adenine dinucleotide (NAD+ ) biosynthesis following acute exercise underpins longer-term muscle metabolic adaptations. Gene expression is typically measured using real-time quantitative polymerase chain reaction (qPCR) platforms. However, interest has developed in the design of multiplex gene expression assays (GeXP) using the GenomeLab GeXP™ Genetic Analysis System, which can simultaneously quantitate gene expression of multiple targets, holding distinct advantages in terms of throughput, limiting technical error, cost effectiveness, and quantitating gene co-expression. This study describes the development of a custom-designed GeXP assay incorporating the measurement of proposed regulators of mitochondrial biogenesis, substrate oxidation, and NAD+ biosynthetic capacity in human skeletal muscle and characterises the resting gene expression (overnight fasted and non-exercised) signature within a group of young, healthy, recreationally active males. The design of GeXP-based assays provides the capacity to more accurately characterise the regulation of a targeted group of genes with specific regulatory functions, a potentially advantageous development for future investigations of the regulation of muscle metabolism by exercise and/or nutrition. This article is protected by copyright. All rights reserved.
    Keywords:  gene expression; mitochondria; skeletal muscle biopsy
    DOI:  https://doi.org/10.1113/EP089557
  20. Nutrients. 2021 Apr 29. pii: 1508. [Epub ahead of print]13(5):
      It has been frequently reported that myostatin inhibition increases muscle mass, but decreases muscle quality (i.e., strength/muscle mass). Resistance exercise training (RT) and essential amino acids (EAAs) are potent anabolic stimuli that synergistically increase muscle mass through changes in muscle protein turnover. In addition, EAAs are known to stimulate mitochondrial biogenesis. We have investigated if RT amplifies the anabolic potential of myostatin inhibition while EAAs enhance muscle quality through stimulations of mitochondrial biogenesis and/or muscle protein turnover. Mice were assigned into ACV (myostatin inhibitor), ACV+EAA, ACV+RT, ACV+EAA +RT, or control (CON) over 4 weeks. RT, but not EAA, increased muscle mass above ACV. Despite differences in muscle mass gain, myofibrillar protein synthesis was stimulated similarly in all vs. CON, suggesting a role for changes in protein breakdown in muscle mass gains. There were increases in MyoD expression but decreases in Atrogin-1/MAFbx expression in ACV+EAA, ACV+RT, and ACV+EAA+RT vs. CON. EAA increased muscle quality (e.g., grip strength and maximal carrying load) without corresponding changes in markers of mitochondrial biogenesis and neuromuscular junction stability. In conclusion, RT amplifies muscle mass and strength through changes in muscle protein turnover in conjunction with changes in implicated signaling, while EAAs enhance muscle quality through unknown mechanisms.
    Keywords:  deuterium oxide; essential amino acids; mass spectrometry; protein turnover; resistance exercise training; soluble activin receptor type IIB
    DOI:  https://doi.org/10.3390/nu13051508
  21. ACS Chem Neurosci. 2021 May 05.
      Neuromuscular diseases result in muscle weakness, disability, and, in many instances, death. Preclinical models form the bedrock of research into these disorders, and the development of in vivo and potentially translational biomarkers for the accurate identification of disease is crucial. Spontaneous Raman spectroscopy can provide a rapid, label-free, and highly specific molecular fingerprint of tissue, making it an attractive potential biomarker. In this study, we have developed and tested an in vivo intramuscular fiber optic Raman technique in two mouse models of devastating human neuromuscular diseases, amyotrophic lateral sclerosis, and Duchenne muscular dystrophy (SOD1G93A and mdx, respectively). The method identified diseased and healthy muscle with high classification accuracies (area under the receiver operating characteristic curves (AUROC): 0.76-0.92). In addition, changes in diseased muscle over time were also identified (AUROCs 0.89-0.97). Key spectral changes related to proteins and the loss of α-helix protein structure. Importantly, in vivo recording did not cause functional motor impairment and only a limited, resolving tissue injury was seen on high-resolution magnetic resonance imaging. Lastly, we demonstrate that ex vivo muscle from human patients with these conditions produced similar spectra to those observed in mice. We conclude that spontaneous Raman spectroscopy of muscle shows promise as a translational research tool.
    Keywords:  Amyotrophic lateral sclerosis; Duchenne muscular dystrophy; Raman spectroscopy; biomarker; muscle
    DOI:  https://doi.org/10.1021/acschemneuro.0c00794
  22. Am J Physiol Cell Physiol. 2021 May 05.
      Skeletal muscle is the most abundant tissue in healthy individuals and it has important roles in health beyond voluntary movement. The overall mass and energy requirements of skeletal muscle require it to be metabolically active and flexible to multiple energy substrates. The tissue has evolved to be largely load-dependent and it readily adapts in a number of positive ways to repetitive overload, such as various forms of exercise training. However, unloading from extended bed rest and/or metabolic derangements in response to trauma, acute illness, or severe pathology, commonly result in rapid muscle wasting. Declines in muscle mass contribute to multi-morbidity, reduce function and exert a substantial, negative impact on quality of life. The principal mechanisms controlling muscle mass have been well-described and these cellular processes are intricately regulated by exercise. Accordingly, exercise has shown great promise and efficacy in preventing or slowing muscle wasting through changes in molecular physiology, organelle function, cell signaling pathways and epigenetic regulation. In this review we focus on the role of exercise in altering the molecular landscape of skeletal muscle in a manner that improves or maintains its health and function in the presence of unloading or disease.
    Keywords:  epigenetics; exercise; muscle wasting; resistance training; skeletal muscle
    DOI:  https://doi.org/10.1152/ajpcell.00056.2021
  23. Age Ageing. 2021 May 05. 50(3): 716-724
       BACKGROUND: The ageing process can result in the decrease of respiratory muscle strength and consequently increased work of breathing and associated breathlessness during activities of daily living in older adults.
    OBJECTIVE: This systematic review and meta-analysis aims to determine the effects of inspiratory muscle training (IMT) in healthy older adults.
    METHODS: A systematic literature search was conducted across four databases (Medline/Pubmed, Web of Science, Cochrane Library CINAHL) using a search strategy consisting of both MeSH and text words including older adults, IMT and functional capacity. The eligibility criteria for selecting studies involved controlled trials investigating IMT via resistive or threshold loading in older adults (>60 years) without a long-term condition.
    RESULTS: Seven studies provided mean change scores for inspiratory muscle pressure and three studies for functional capacity. A significant improvement was found for maximal inspiratory pressure (PImax) following training (n = 7, 3.03 [2.44, 3.61], P = <0.00001) but not for functional capacity (n = 3, 2.42 [-1.28, 6.12], P = 0.20). There was no significant correlation between baseline PImax and post-intervention change in PImax values (n = 7, r = 0.342, P = 0.453).
    CONCLUSIONS: IMT can be beneficial in terms of improving inspiratory muscle strength in older adults regardless of their initial degree of inspiratory muscle weakness. Further research is required to investigate the effect of IMT on functional capacity and quality of life in older adults.
    Keywords:  maximal inspiratory pressure; older people; rehabilitation; six-minute walk test; systematic review
    DOI:  https://doi.org/10.1093/ageing/afaa221
  24. J Genet Genomics. 2021 Apr 07. pii: S1673-8527(21)00081-3. [Epub ahead of print]
      Skeletal and cardiac muscles are striated myofibers that contain highly organized sarcomeres for muscle contraction. Recent studies revealed that Smyd1, a lysine methyltransferase, plays a key role in sarcomere assembly in heart and trunk skeletal muscles. However, Smyd1 expression and function in craniofacial muscles are not known. Here, we analyze the developmental expression and function of two smyd1 paralogous genes, smyd1a and smyd1b, in craniofacial and cardiac muscles of zebrafish embryos. Our data show that loss of smyd1a (smyd1amb5) or smyd1b (smyd1bsa15678) has no visible effects on myogenic commitment and expression of myod and myosin heavy-chain mRNA transcripts in craniofacial muscles. However, myosin heavy-chain protein accumulation and sarcomere organization are dramatically reduced in smyd1bsa15678 single mutant, and almost completely diminish in smyd1amb5; smyd1bsa15678 double mutant, but not in smyd1amb5 mutant. Similar defects are also observed in cardiac muscles of smyd1bsa15678 mutant. Defective craniofacial and cardiac muscle formation is associated with an upregulation of hsp90α1 and unc45b mRNA expression in smyd1bsa15678 and smyd1amb5; smyd1bsa15678 mutants. Together, our studies indicate that Smyd1b, but not Smyd1a, plays a key role in myosin heavy-chain protein expression and sarcomere organization in craniofacial and cardiac muscles. Loss of smyd1b results in muscle-specific stress response.
    Keywords:  Cardiac muscle; Craniofacial muscle; Myosin; Sarcomere; Smyd1
    DOI:  https://doi.org/10.1016/j.jgg.2021.03.004
  25. J Cachexia Sarcopenia Muscle. 2021 May 06.
       BACKGROUND: Skeletal muscle wasting and fatigue are commonly observed in cancer patients receiving chemotherapy and associated with reduced treatment outcome and quality of life. Nutritional support may mitigate these side effects, but potential interference with chemotherapy efficacy could be of concern. Here, we investigated the effects of an ω-3 polyunsaturated fatty acid (eicosapentaenoic acid and docosahexaenoic acid), leucine-enriched, high-protein (100% whey), additional vitamin D, and prebiotic fibres 'specific nutritional composition' (SNC) and chemotherapy on state-of-the-art tumour organoids and muscle cells and studied muscle function, physical activity, systemic inflammation, and chemotherapy efficacy in a mouse model of aggressive colorectal cancer (CRC).
    METHODS: Tumour-bearing mice received a diet with or without SNC. Chemotherapy treatment consisted of oxaliplatin and 5-fluorouracil. Tumour formation was monitored by calliper measurements. Physical activity was continuously monitored by infrared imaging. Ex vivo muscle performance was determined by myography, muscle fatty acid composition by gas chromatography, and plasma cytokine levels by Luminex xMAP technology. Patient-derived CRC organoids and C2C12 myotubes were used to determine whether SNC affects chemotherapy sensitivity in vitro.
    RESULTS: Specific nutritional composition increased muscle contraction capacity of chemotherapy-treated tumour-bearing mice (P < 0.05) and enriched ω-3 fatty acid composition in muscle without affecting treatment efficacy (P < 0.0001). Mice receiving SNC maintained physical activity after chemotherapy and showed decreased systemic inflammation. Therapeutic response of CRC organoids was unaffected by SNC nutrients, while cell viability and protein synthesis of muscle cells significantly improved.
    CONCLUSIONS: The results show that specialized nutritional support can be used to maintain muscle function and physical activity levels during chemotherapy without increasing tumour viability. Therefore, nutritional strategies have potential value in promoting cancer and chemotherapy tolerance.
    Keywords:  Colorectal cancer; Muscle function; Physical activity; Pre-cachexia; Specialized nutrition
    DOI:  https://doi.org/10.1002/jcsm.12703
  26. PLoS One. 2021 ;16(5): e0250741
      The interactions between skeletal muscle and bone have been recently noted, and muscle-derived humoral factors related to bone metabolism play crucial roles in the muscle/bone relationships. We previously reported that extracellular vesicles from mouse muscle C2C12 cells (Myo-EVs) suppress osteoclast formation in mice. Although mechanical stress is included in extrinsic factors which are important for both muscle and bone, the detailed roles of mechanical stress in the muscle/bone interactions have still remained unknown. In present study, we examined the effects of fluid flow shear stress (FFSS) to C2C12 cells on the physiological actions of muscle cell-derived EV. Applying FFSS to C2C12 cells significantly enhanced muscle cell-derived EV-suppressed osteoclast formation and several osteoclast-related gene levels in mouse bone marrow cells in the presence of receptor activator nuclear factor κB ligand (RANKL). Moreover, FFSS to C2C12 cells significantly enhanced muscle cell-derived EV-suppressed mitochondria biogenesis genes during osteoclast formation with RANKL treatment. In addition, FFSS to C2C12 cells significantly enhanced muscle cell-derived EV-suppressed osteoclast formation and several osteoclast-related gene levels in Raw264.7 cells in the presence of RANKL. Small RNA-seq-analysis showed that FFSS elevated the expression of miR196a-5p and miR155-5p with the suppressive actions of osteoclast formation and low expression in mouse bone cells. On the other hand, muscle cell-derived EVs with or without FFSS to C2C12 cells did not affect the expression of osteogenic genes, alkaline phosphatase activity and mineralization in mouse osteoblasts. In conclusion, we first showed that FFSS to C2C12 cells enhances the suppressive effects of muscle cell-derived EVs on osteoclast formation in mouse cells. Muscle cell-derived EVs might be partly involved in the effects of mechanical stress on the muscle/bone relationships.
    DOI:  https://doi.org/10.1371/journal.pone.0250741
  27. Cell Biosci. 2021 May 01. 11(1): 81
       BACKGROUND: Neuromuscular junctions (NMJs) are chemical synapses formed between motor neurons and skeletal muscle fibers and are essential for controlling muscle contraction. NMJ dysfunction causes motor disorders, muscle wasting, and even breathing difficulties. Increasing evidence suggests that many NMJ disorders are closely related to alterations in specific gene products that are highly concentrated in the synaptic region of the muscle. However, many of these proteins are still undiscovered. Thus, screening for NMJ-specific proteins is essential for studying NMJ and the pathogenesis of NMJ diseases.
    RESULTS: In this study, synaptic regions (SRs) and nonsynaptic regions (NSRs) of diaphragm samples from newborn (P0) and adult (3-month-old) mice were used for RNA-seq. A total of 92 and 182 genes were identified as differentially expressed between the SR and NSR in newborn and adult mice, respectively. Meanwhile, a total of 1563 genes were identified as differentially expressed between the newborn SR and adult SR. Gene Ontology (GO) enrichment analyses, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis and gene set enrichment analysis (GSEA) of the DEGs were performed. Protein-protein interaction (PPI) networks were constructed using STRING and Cytoscape. Further analysis identified some novel proteins and pathways that may be important for NMJ development, maintenance and maturation. Specifically, Sv2b, Ptgir, Gabrb3, P2rx3, Dlgap1 and Rims1 may play roles in NMJ development. Hcn1 may localize to the muscle membrane to regulate NMJ maintenance. Trim63, Fbxo32 and several Asb family proteins may regulate muscle developmental-related processes.
    CONCLUSION: Here, we present a complete dataset describing the spatiotemporal transcriptome changes in synaptic genes and important synaptic pathways. The neuronal projection-related pathway, ion channel activity and neuroactive ligand-receptor interaction pathway are important for NMJ development. The myelination and voltage-gated ion channel activity pathway may be important for NMJ maintenance. These data will facilitate the understanding of the molecular mechanisms underlying the development and maintenance of NMJ and the pathogenesis of NMJ disorders.
    Keywords:  Differentially expressed genes; NMJ diseases; Neuromuscular junction; RNA-seq
    DOI:  https://doi.org/10.1186/s13578-021-00590-9
  28. J Cachexia Sarcopenia Muscle. 2021 May 07.
       BACKGROUND: Skeletal muscle wasting (SMW) in cancer patients is associated with increased morbidity, mortality, treatment intolerance and discontinuation, and poor quality of life. This is particularly true for patients with pancreatic ductal adenocarcinoma (PDAC), as over 85% experience SMW, which is responsible for ~30% of patient deaths. While the established paradigm to explain SMW posits that muscle catabolism from systemic inflammation and nutritional deficiencies, the cause of death, and the cellular and molecular mechanisms responsible remain to be elucidated. To address this, we investigated the relationship between tumour burden and survival in the KCKO murine PDAC model.
    METHODS: Female C57BL/6J mice 6-8 weeks of age underwent orthotopic injection with KCKO-luc tumour cells. Solid tumour was verified on Day 5, post-tumour inoculation. In vivo, longitudinal lean mass and tumour burden were assessed via dual-energy X-ray absorptiometry and IVIS imaging, respectively, and total body weight was assessed, weekly. Animals were sacrificed at a designated end point of 'failure to thrive'. After sacrifice, lower limb hind muscles were harvested for histology and RNA extraction.
    RESULTS: We found a strong correlation between primary tumour size and survival (r2  = 0.83, P < 0.0001). A significant decrease in lower limb lean mass was first detected at Day 38 post-implantation vs. no tumour controls (NTCs) (P < 0.0001). SMW was confirmed by histology, which demonstrated a 38%, 32.7%, and 39.9% decrease in fibre size of extensor digitorum longus, soleus, and tibialis anterior muscles, respectively, in PDAC mice vs. NTC (P < 0.002). Histology also revealed a 67.6% increase in haematopoietic cells within the muscle of PDAC mice when compared with NTC. Bulk RNAseq on muscles from PDAC mice vs. NTC revealed significant increases in c/ebpβ/Δ, il-1, il-6, and tnf gene expression. Pathway analyses to identify potential upstream factors revealed increased adipogenic gene expression, including a four-fold increase in igfbp-3. Histomorphometry of Oil Red-O staining for fat content in tibialis anterior muscles demonstrated a 95.5% increase in positively stained fibres from PDAC mice vs. NTC.
    CONCLUSIONS: Together, these findings support a novel model of PDAC-associated SMW and mortality in which systemic inflammation leads to inflammatory cell infiltration into skeletal muscle with up-regulated myocellular lipids.
    Keywords:  Murine model; Myocellular lipid; Pancreatic cancer; Skeletal muscle wasting
    DOI:  https://doi.org/10.1002/jcsm.12699
  29. Sci Rep. 2021 May 07. 11(1): 9806
      Both research conducted under microgravity conditions and ground-based space analog studies have shown that air pump-based plantar mechanical stimulation (PMS) of cutaneous mechanoreceptors of the sole of the foot is able to increase neuromuscular activity in the musculature of the lower limbs. This type of stimulation is able to attenuate unloading-induced skeletal muscle atrophy and impaired muscle function. The aim of the present study was to evaluate the effects of PMS on anabolic signaling pathways in rat soleus muscle following 7-day hindlimb suspension (HS) and to elucidate if the effects of PMS on anabolic processes would be NO-dependent. The soles of the feet were stimulated with a frequency of 1-s inflation/1-s deflation with a total of 20 min followed by 10 min rest. This cycle was repeated for 4 h each day. We observed a decrease in the soleus muscle mass after 7-day HS, which was not prevented by PMS. We also observed a decrease in slow-type fiber cross-sectional area (CSA) by 56%, which significantly exceeded a decrease (-22%) in fast-type fiber CSA. PMS prevented a reduction in slow-twitch fiber CSA, but had no effect on fast-twitch fiber CSA. PMS prevented a 63% decrease in protein synthesis after 7-day HS as well as changes in several key anabolic signaling regulators, such as p70S6k, 4E-BP1, GSK3β, eEF-2, p90RSK. PMS also prevented a decrease in the markers of translational capacity (18S and 28S rRNA, c-myc, 45S pre-rRNA). Some effects of PMS on anabolic signaling were altered due to NO-synthase inhibitor (L-NAME) administration. Thus, PMS is able to partially prevent atrophic processes in rat soleus muscle during 7-day HS, affecting slow-type muscle fibers. This effect is mediated by alterations in anabolic signaling pathways and may depend on NO-synthase activity.
    DOI:  https://doi.org/10.1038/s41598-021-89362-6
  30. Gene. 2021 May 04. pii: S0378-1119(21)00282-1. [Epub ahead of print] 145688
      In contrast to mice or zebrafish, trout exhibits post-larval muscle growth through hypertrophy and formation of new myofibers (hyperplasia). The muscle fibers are formed by the fusion of mononucleated cells (myoblasts) regulated by several muscle-specific proteins such as Myomaker or Myomixer. In this work, we identified a unique gene encoding a Myomixer protein of 77 amino acids (aa) in the trout genome. Sequence analysis and phylogenetic tree showed moderate conservation of the overall protein sequence across teleost fish (61% of aa identity between trout and zebrafish Myomixer sequences). Nevertheless, the functionally essential motif, AxLyCxL is perfectly conserved in all studied sequences of vertebrates. Using in situ hybridization, we observed that myomixer was highly expressed in the embryonic myotome, particularly in the hyperplasic area. Moreover, myomixer remained readily expressed in white muscle of juvenile (1 and 20 g) although its expression decreased in mature fish. We also showed that myomixer is up-regulated during muscle regeneration and in vitro myoblasts differentiation. Together, these data indicate that myomixer expression is consistently associated with the formation of new myofibers during somitogenesis, post-larval growth and muscle regeneration in trout.
    DOI:  https://doi.org/10.1016/j.gene.2021.145688
  31. Front Neurosci. 2021 ;15 659883
      The mammalian circadian clock systems regulate the day-night variation of several physiological functions such as the sleep/wake cycle and core body temperature. Disturbance in the circadian clock due to shiftwork and chronic jetlag is related to the risk of several disorders such as metabolic syndrome and cancer. Recently, it has been thought that shiftwork increases the risk of sarcopenia which is characterized by age-related decline of muscle mass and its dysfunctions including muscle strength and/or physical performance. First, we summarize the association between circadian rhythm and the occurrence of sarcopenia and discuss its mechanistic insight by focusing on the muscle function and molecular clock gene in knockout or mutant mice. The clock gene knockout or mutant mice showed early aging phenotypes, including low survival rate and muscle loss. It suggests that improvement in the disturbance of the circadian clock plays an important role in the aging process of healthy muscles. Nutritional intake has the potential to augment muscle growth and entrain the peripheral clock. Second, we discuss the potential of chrono-nutrition in preventing aging-related muscle loss and dysfunction. We also focus on the effects of time-restricted feeding (TRF) and the distribution of protein intake across three meals.
    Keywords:  aging; chrono-nutrition; circadian rhythm; muscle; nutrition; sarcopenia
    DOI:  https://doi.org/10.3389/fnins.2021.659883
  32. ESC Heart Fail. 2021 May 05.
       BACKGROUND: Skeletal muscle (SM) alterations contribute to exercise intolerance in heart failure patients with preserved (HFpEF) or reduced (HFrEF) left ventricular ejection fraction (LVEF). Protein degradation via the ubiquitin-proteasome-system (UPS), nuclear apoptosis, and reduced mitochondrial energy supply is associated with SM weakness in HFrEF. These mechanisms are incompletely studied in HFpEF, and a direct comparison between these groups is missing.
    METHODS AND RESULTS: Patients with HFpEF (LVEF ≥ 50%, septal E/e' > 15 or >8 and NT-proBNP > 220 pg/mL, n = 20), HFrEF (LVEF ≤ 35%, n = 20) and sedentary control subjects (Con, n = 12) were studied. Inflammatory markers were measured in serum, and markers of the UPS, nuclear apoptosis, and energy metabolism were determined in percutaneous SM biopsies. Both HFpEF and HFrEF showed increased proteolysis (MuRF-1 protein expression, ubiquitination, and proteasome activity) with proteasome activity significantly related to interleukin-6. Proteolysis was more pronounced in patients with lower exercise capacity as indicated by peak oxygen uptake in per cent predicted below the median. Markers of apoptosis did not differ between groups. Mitochondrial energy supply was reduced in HFpEF and HFrEF (complex-I activity: -31% and -53%; malate dehydrogenase activity: -20% and -29%; both P < 0.05 vs. Con). In contrast, short-term energy supply via creatine kinase was increased in HFpEF but decreased in HFrEF (47% and -45%; P < 0.05 vs. Con).
    CONCLUSIONS: Similarly to HFrEF, skeletal muscle in HFpEF is characterized by increased proteolysis linked to systemic inflammation and reduced exercise capacity. Energy metabolism is disturbed in both groups; however, its regulation seems to be severity-dependent.
    Keywords:  Atrophy; Diastolic heart failure; Heart failure; Mitochondria; Skeletal muscle exercise; Ubiquitin-proteasome system genetics
    DOI:  https://doi.org/10.1002/ehf2.13405
  33. Mol Ther. 2021 Apr 30. pii: S1525-0016(21)00247-1. [Epub ahead of print]
      Omics analyses are powerful methods to obtain an integrated view of complex biological processes, disease progression or therapy efficiency. However, few studies have compared different disease forms and different therapy strategies to define the common molecular signatures representing the most significant implicated pathways. Here, we used RNA sequencing and mass spectrometry data to profile the transcriptomes and proteomes of mouse models for three forms of centronuclear myopathies (CNM), untreated or treated with either a drug (tamoxifen), antisense oligonucleotides reducing the level of dynamin 2 (DNM2), or following modulation of dynamin 2 or amphiphysin 2 (BIN1) through genetic crosses. Unsupervised analysis and differential gene and protein expression were performed to retrieve CNM molecular signatures. Longitudinal studies before, at and after disease onset highlighted potential disease causes and consequences. Main pathways in the common CNM disease signature include muscle contraction, regeneration and inflammation. The common therapy signature revealed novel potential therapeutic targets including the calcium regulator sarcolipin. We identified several novel biomarkers validated in muscle and/or plasma through RNA quantification, western blotting and ELISA assays, including ANXA2 and IGFBP2. This study validates the concept of using multi-omics approaches to identify molecular signatures common to different disease forms and therapeutic strategies.
    DOI:  https://doi.org/10.1016/j.ymthe.2021.04.033
  34. J Cachexia Sarcopenia Muscle. 2021 May 05.
       BACKGROUND: Cancer cachexia is a multifactorial debilitating syndrome that directly accounts for more than 20% of cancer deaths while there is no effective therapeutic approach for treatment of cancer cachexia. Carnosol (CS) is a bioactive diterpene compound present in Lamiaceae spp., which has been demonstrated to have antioxidant, anti-inflammatory, and anticancer properties. But its effects on cancer cachexia and the possible mechanism remain a mystery.
    METHODS: The in vitro cell models of C2C12 myotube atrophy and 3T3-L1 mature adipocyte lipolysis were used to check the activities of CS and its synthesized analogues. C26 tumour-bearing BALB/c mice were applied as the animal model to examine their therapeutic effects on cancer cachexia in vivo. Levels of related signal proteins in both in vitro and in vivo experiments were examined using western blotting to study the possible mechanisms.
    RESULTS: Carnosol and its analogues [dimethyl-carnosol (DCS) and dimethyl-carnosol-D6 (DCSD)] alleviated myotube atrophy of C2C12 myotubes and lipolysis of 3T3-L1 adipocytes in vitro. Interestingly, CS and its analogues exhibited stronger inhibitive effects on muscle atrophy induced by tumour necrosis factor-α (TNF-α) (CS, P < 0.001; DCS, P < 0.001; DCSD, P < 0.001) in C2C12 myoblasts than on muscle atrophy induced by IL-6 (CS, P < 0.05; DCS, P = 0.08; DCSD, P < 0.05). In a C26 tumour-bearing mice model, administration of CS or its analogue DCSD significantly prevented body weight loss without affecting tumour size. At the end of the experiment, the body weight of mice treated with CS and DCSD was significantly increased by 11.09% (P < 0.01) and 11.38% (P < 0.01) compared with that of the C26 model group. CS and DCSD also improved the weight loss of epididymal adipose tissue in C26 model mice by 176.6% (P < 0.01) and 48.2% (P < 0.05) increase, respectively. CS and DCSD treatment partly preserved gastrocnemius myofibres cross-sectional area. CS treatment decreased the serum level of TNF-α (-95.02%, P < 0.01) but not IL-6 in C26 tumour-bearing mice. Inhibition on NF-κB and activation of Akt signalling pathway were involved in the ameliorating effects of CS and its analogues on muscle wasting both in vitro and in vivo. CS and its analogues also alleviated adipose tissue loss by inhibiting NF-κB and AMPK signalling pathways both in vitro and in vivo.
    CONCLUSIONS: CS and its analogues exhibited anticachexia effects mainly by inhibiting TNF-α/NF-κB pathway and decreasing muscle and adipose tissue loss. CS and its analogues might be promising drug candidates for the treatment of cancer cachexia.
    Keywords:  Cancer cachexia; Carnosol; Lipolysis; Muscle atrophy; NF-κB
    DOI:  https://doi.org/10.1002/jcsm.12710
  35. Cell Death Dis. 2021 May 06. 12(5): 452
      One of the critical events that regulates muscle cell differentiation is the replacement of the lamin B receptor (LBR)-tether with the lamin A/C (LMNA)-tether to remodel transcription and induce differentiation-specific genes. Here, we report that localization and activity of the LBR-tether are crucially dependent on the muscle-specific chaperone HSPB3 and that depletion of HSPB3 prevents muscle cell differentiation. We further show that HSPB3 binds to LBR in the nucleoplasm and maintains it in a dynamic state, thus promoting the transcription of myogenic genes, including the genes to remodel the extracellular matrix. Remarkably, HSPB3 overexpression alone is sufficient to induce the differentiation of two human muscle cell lines, LHCNM2 cells, and rhabdomyosarcoma cells. We also show that mutant R116P-HSPB3 from a myopathy patient with chromatin alterations and muscle fiber disorganization, forms nuclear aggregates that immobilize LBR. We find that R116P-HSPB3 is unable to induce myoblast differentiation and instead activates the unfolded protein response. We propose that HSPB3 is a specialized chaperone engaged in muscle cell differentiation and that dysfunctional HSPB3 causes neuromuscular disease by deregulating LBR.
    DOI:  https://doi.org/10.1038/s41419-021-03737-1
  36. Acta Naturae. 2021 Jan-Mar;13(1):13(1): 47-58
      Many genetic diseases that are responsible for muscular disorders have been described to date. Gene replacement therapy is a state-of-the-art strategy used to treat such diseases. In this approach, the functional copy of a gene is delivered to the affected tissues using viral vectors. There is an urgent need for the design of short, regulatory sequences that would drive a high and robust expression of a therapeutic transgene in skeletal muscles, the diaphragm, and the heart, while exhibiting limited activity in non-target tissues. This review focuses on the development and improvement of muscle-specific promoters based on skeletal muscle α-actin, muscle creatine kinase, and desmin genes, as well as other genes expressed in muscles. The current approaches used to engineer synthetic muscle-specific promoters are described. Other elements of the viral vectors that contribute to tissue-specific expression are also discussed. A special feature of this review is the presence of up-to-date information on the clinical and preclinical trials of gene therapy drug candidates that utilize muscle-specific promoters.
    Keywords:  AAV; Gene therapy; muscle-specific promoters; natural promoters; synthetic promoters
    DOI:  https://doi.org/10.32607/actanaturae.11063
  37. J Clin Invest. 2021 May 03. pii: 148372. [Epub ahead of print]131(9):
      Since the discovery of myostatin (MSTN; also known as GDF-8) as a critical regulator of skeletal muscle mass in 1997, there has been an extensive effort directed at understanding the cellular and physiological mechanisms underlying MSTN activity, with the long-term goal of developing strategies and agents capable of blocking MSTN signaling to treat patients with muscle loss. Considerable progress has been made in elucidating key components of this regulatory system, and in parallel with this effort has been the development of numerous biologics that have been tested in clinical trials for a wide range of indications, including muscular dystrophy, sporadic inclusion body myositis, spinal muscular atrophy, cachexia, muscle loss due to aging or following falls, obesity, and type 2 diabetes. Here, I review what is known about the MSTN regulatory system and the current state of efforts to target this pathway for clinical applications.
    DOI:  https://doi.org/10.1172/JCI148372
  38. Sci Rep. 2021 May 05. 11(1): 9535
      Kinesin-1 and Growth Associated Protein 43 (GAP-43) localization in muscle fiber are crucial for proper skeletal muscle hypertrophy. To evaluate this assumption, we investigated the beneficial effects of endurance training on GAP-43 and Kinesin Family Member 5B (KIF5B) expression in gastrocnemius muscle of streptozotocin (STZ)-induced diabetic rats. Fifty-two male rats were randomly divided into four groups: healthy control (C), healthy trained (T), diabetic control (DC) and diabetic trained (DT). Diabetes was induced by a single intraperitoneal injection of STZ (45 mg/kg). The rats in DT and T groups were subjected to treadmill running for 5 days a week over 6 weeks. The results indicated that the GAP-43 and KIF5B protein levels in the DC group were significantly lower than those in the C group. Additionally, chronic treadmill running in diabetic rats was accompanied by significant increase of GAP-43 and KIF5B protein expression, compared to DC group. Furthermore, the endurance training in healthy rats was associated with a significant increase of GAP-43 and KIF5B protein levels. In addition, we found positive correlation between GAP-43 and KIF5B protein levels and myonuclear number per fiber and average gastrocnemius cross-sectional area (CSA). GAP43 and KIF5B protein levels were decreased in skeletal muscles of diabetic rats, and exercise training had beneficial effects and could restore their abnormal expression. Moreover, there is a strong relationship between muscle hypertrophy and GAP-43 and KIF5B protein levels.
    DOI:  https://doi.org/10.1038/s41598-021-89106-6
  39. Cell Metab. 2021 May 04. pii: S1550-4131(21)00174-1. [Epub ahead of print]33(5): 847-848
      Health benefits of aerobic exercise are indisputable and are closely related to the maintenance of mitochondrial energy homeostasis and insulin sensitivity. Flockhart et al. (2021) demonstrate, however, that a high volume of high-intensity aerobic exercise adversely affects mitochondrial function and may cause impaired glucose tolerance.
    DOI:  https://doi.org/10.1016/j.cmet.2021.04.008
  40. Cell Rep Med. 2021 Apr 20. 2(4): 100226
      Tissue-specific mechanisms prompting obesity-related development complications in humans remain unclear. We apply multiomics analyses of subcutaneous adipose tissue and skeletal muscle to examine the effects of acquired obesity among 49 BMI-discordant monozygotic twin pairs. Overall, adipose tissue appears to be more affected by excess body weight than skeletal muscle. In heavier co-twins, we observe a transcriptional pattern of downregulated mitochondrial pathways in both tissues and upregulated inflammatory pathways in adipose tissue. In adipose tissue, heavier co-twins exhibit lower creatine levels; in skeletal muscle, glycolysis- and redox stress-related protein and metabolite levels remain higher. Furthermore, metabolomics analyses in both tissues reveal that several proinflammatory lipids are higher and six of the same lipid derivatives are lower in acquired obesity. Finally, in adipose tissue, but not in skeletal muscle, mitochondrial downregulation and upregulated inflammation are associated with a fatty liver, insulin resistance, and dyslipidemia, suggesting that adipose tissue dominates in acquired obesity.
    Keywords:  adipose tissue; genome-scale metabolic models; metabolomics; multiomics; obesity; proteomics; skeletal muscle; transcriptomics; twins
    DOI:  https://doi.org/10.1016/j.xcrm.2021.100226
  41. J Dev Orig Health Dis. 2021 May 05. 1-8
      Maternal exercise has shown beneficial effects on mother and child. Literature confirm progeny's cognition improvement, and upregulation in neurotrophins, antioxidant network, and DNA repair system. Considering that there is a lack of information demonstrating the impact of maternal exercise on offspring's skeletal muscle, we aimed to investigate the mitochondrial and redox effects elicited by maternal swimming. Adult female Wistar rats were divided into three groups: control sedentary, free swimming, and swimming with overload (2% of the body weight). Exercised groups were submitted weekly to five swimming sessions (30 min/day), starting 1 week prior to the mating and lasting to the delivery. Gastrocnemius and soleus muscle from 60-day-old offspring were analyzed. Our results clearly showed a sex-dependent effect. Male soleus showed increased mitochondrial functionality in the overload group. Female muscle from the overload group adapted deeply. Considering the redox status, the female offspring delivered to overload exercised dams presented reduced oxidants levels and protein damage, allied to downregulated antioxidant defenses. We also observed an increase in the mitochondrial function in the gastrocnemius muscle of the female offspring born from overload exercised dams. Soleus from female delivered to the overload exercise group presented reduced mitochondrial activity, as well as reduced reactive species, protein carbonyls, and antioxidant network, when compared to the male. In conclusion, maternal exercise altered the redox status and mitochondrial function in the offspring's skeletal muscle in a sex-dependent way. The clinical implication was not investigated; however, the sexual dimorphism in response to maternal exercise might impact exercise resilience in adulthood.
    Keywords:  Maternal exercise; antioxidant; mitochondria; redox status; sexual dimorphism; skeletal muscle
    DOI:  https://doi.org/10.1017/S2040174421000209
  42. Front Endocrinol (Lausanne). 2021 ;12 653557
      Insulin and muscle contractions mediate glucose transporter 4 (GLUT4) translocation and insertion into the plasma membrane (PM) for glucose uptake in skeletal muscles. Muscle contraction results in AMPK activation, which promotes GLUT4 translocation and PM insertion. However, little is known regarding AMPK effectors that directly regulate GLUT4 translocation. We aim to identify novel AMPK effectors in the regulation of GLUT4 translocation. We performed biochemical, molecular biology and fluorescent microscopy imaging experiments using gain- and loss-of-function mutants of tropomodulin 3 (Tmod3). Here we report Tmod3, an actin filament capping protein, as a novel AMPK substrate and an essential mediator of AMPK-dependent GLUT4 translocation and glucose uptake in myoblasts. Furthermore, Tmod3 plays a key role in AMPK-induced F-actin remodeling and GLUT4 insertion into the PM. Our study defines Tmod3 as a key AMPK effector in the regulation of GLUT4 insertion into the PM and glucose uptake in muscle cells, and offers new mechanistic insights into the regulation of glucose homeostasis.
    Keywords:  AMPK; GLUT4; Tmod3; myoblasts; translocation
    DOI:  https://doi.org/10.3389/fendo.2021.653557