bims-momema Biomed News
on Molecular mechanisms of macropinocytosis
Issue of 2022–05–01
four papers selected by
Harilaos Filippakis, Harvard University



  1. Zhejiang Da Xue Xue Bao Yi Xue Ban. 2021 Jan 25. 50(7): 1-11
      Conventional therapies for malignant tumors have limitations and disadvantages. In recent years, the cancer starvation therapy has emerged which intends to deprive cancer cells of nutritional supply. There are several approaches to"starve" cancer cells: to intervene tumor angiogenesis by targeted inhibition of angiogenic factors or their receptors and integrins; to block the blood supply of cancer cells by embolizing or compressing blood vessels; to intervene metabolic process of cancer cells by inhibition of the signal pathways of mitochondrial serine-glycine-one earbon metabolism, glycolysis and amino acid metabolism; cancer starvation therapy can be employed with oxidation therapy, chemotherapy, sonodynamic therapy, anti-autophagy therapy or other therapies to achieve synergistic effects. This article reviews the research progress of cancer starvation therapy in recent years and discusses the existing problems.
    Keywords:  Anti-angiogenesis; Neoplasms; Review; Starvation therapy; Synergistic therapy; Tumor metabolism
    DOI:  https://doi.org/10.3724/zdxbyxb-2021-0297
  2. J Gerontol A Biol Sci Med Sci. 2022 Apr 29. pii: glac100. [Epub ahead of print]
      Dietary restriction (DR) is one of the most potent ways to extend health- and lifespan. Key progress in understanding the mechanisms of DR, and ageing more generally, was made when dietary protein, and more specifically essential amino acids (EAA), were identified as the dietary component to restrict to obtain DR's health and lifespan benefits. This role of dietary amino acids has influenced work on ageing mechanisms, especially in nutrient sensing, e.g. Tor and insulin(-like) signalling networks. Experimental biology in Drosophila melanogaster has been instrumental in generating and confirming the hypothesis that EAA availability is important in ageing. Here, we expand on previous work testing the involvement of EAA in DR through large scale (N=6,238) supplementation experiments across four diets and two genotypes in female flies. Surprisingly, we find that EAA are not essential to DR's lifespan benefits. Importantly, we do identify the fecundity benefits of EAA supplementation suggesting the supplemented EAA were bioavailable. Furthermore, we find that the effects of amino acids on lifespan vary by diet and genetic line studied and that at our most restricted diet fecundity is constrained by other nutrients than EAA. We suggest that DR for optimal health is a concert of nutritional effects, orchestrated by genetic, dietary and other environmental interactions. Our results question the universal importance of amino acid availability in the biology of ageing and DR.
    Keywords:  ageing; diet; drosophila; nutrients; reaction norm
    DOI:  https://doi.org/10.1093/gerona/glac100
  3. Mol Carcinog. 2022 Apr 26.
      Aberrant activation of multiple complex signaling pathways underlies the pathogenesis of rhabdomyosarcoma (RMS), which remains a cause of mortality in approximately 30% of children with RMS. Bromodomain and extraterminal (BET) domain chromatin remodeling regulates several of these pathways. Here, we targeted bromodomain 4 (BRD4) in combination with another molecular metabolic tumor driver, the Akt/mTOR signaling pathway, to provide a highly effective treatment for this neoplasm. We demonstrated that a nexus of these two molecular pathways underlies RMS pathogenesis. Our data show that the combined inhibition of the BET bromodomain and mTORC1/2 signaling abrogates aggressive RMS growth. Thus, the bromodomain inhibitor RVX-208 significantly augmented the therapeutic effects of the dual mTORC1/2 inhibitors, OSI-027 and PP242, both in vitro and in a human xenograft murine model. Drug-treated residual tumors showed a decrease in the activation of underlying signaling mechanisms characterized by a reduction in the expression of p-AKT, p-mTOR, p-p70S6K, cyclin D1, and proliferation. Our ChIP-seq data demonstrated that RVX-208 effectively blocked BRD4 occupancy on its target promoters. ChIP-qPCR assays further confirmed that RVX-208 treatment resulted in a significant decrease in H3K27ac and H4K8ac signals at their target loci. While single RVX-208 treatment induces apoptosis and a single mTORC1/2 inhibitor induces macropinocytosis, their combined treatment led to necroptosis-mediated cell death. These data suggest that combined treatment with drugs targeting BRD4 and mTORC1/2 may be an effective therapeutic intervention for drug-resistant RMS.
    Keywords:  BRD4; combination therapy; mTORC1/2; necroptosis; rhabdomyosarcoma
    DOI:  https://doi.org/10.1002/mc.23414
  4. Cell Death Discov. 2022 Apr 23. 8(1): 225
      Angiopoietin-like-4 (ANGPTL4), a secreted glycoprotein that is mainly known as a regulator in lipid metabolism, now, is also indicated to be involved in the regulation of cancer progression and metastasis. However, little is known about not only biological functions, but also underlying mechanism of ANGPTL4 in the progression of osteosarcoma (OS). Here, we discovered that ANGPTL4 is downregulated in OS, and is associated with branched-chain amino acid (BCAA) metabolism. The BCAAs (valine, leucine, and isoleucine) are essential amino acids that play an important role in metabolic regulation. Aberrant BCAA metabolism is also found in various cancers and is associated with tumor progression, including proliferation, invasion, and metastasis. In this study, we indicated that the negative relation between the expression of ANGPTL4 and BCAA catabolism in OS samples and cell lines. The knockdown of ANGPTL4 in OS cells resulted in the accumulation of BCAAs, which in turn activated the mTOR signaling pathway, enhancing OS cell proliferation. Thus, reduced expression of ANGPTL4 is associated with the progression of OS. Taken together, our results demonstrated that the ANGPTL4/BCAA/mTOR axis is an important pathway in OS progression and may be a potential therapeutic target to slow OS progression.
    DOI:  https://doi.org/10.1038/s41420-022-01029-x