bims-momema Biomed News
on Molecular mechanisms of macropinocytosis
Issue of 2022–04–17
eight papers selected by
Harilaos Filippakis, Harvard University



  1. Sci Rep. 2022 Apr 15. 12(1): 6322
      Macropinocytosis is a type of endocytosis accompanied by actin rearrangement-driven membrane deformation, such as lamellipodia formation and membrane ruffling, followed by the formation of large vesicles, macropinosomes. Ras-transformed cancer cells efficiently acquire exogenous amino acids for their survival through macropinocytosis. Thus, inhibition of macropinocytosis is a promising strategy for cancer therapy. To date, few specific agents that inhibit macropinocytosis have been developed. Here, focusing on the mechanosensitive ion channel Piezo1, we found that Yoda1, a Piezo1 agonist, potently inhibits macropinocytosis induced by epidermal growth factor (EGF). The inhibition of ruffle formation by Yoda1 was dependent on the extracellular Ca2+ influx through Piezo1 and on the activation of the calcium-activated potassium channel KCa3.1. This suggests that Ca2+ ions can regulate EGF-stimulated macropinocytosis. We propose the potential for macropinocytosis inhibition through the regulation of a mechanosensitive channel activity using chemical tools.
    DOI:  https://doi.org/10.1038/s41598-022-10153-8
  2. Traffic. 2022 Apr 15.
      In the skin epidermis, melanin is produced and stored within melanosomes in melanocytes, and then transferred to keratinocytes. Different models have been proposed to explain the melanin transfer mechanism, which differ essentially in how melanin is transferred - either in a membrane-bound melanosome or as a melanosome core, i.e., melanocore. Here, we investigated the endocytic route followed by melanocores and melanosomes during internalization by keratinocytes, by comparing the uptake of melanocores isolated from the supernatant of melanocyte cultures, with melanosomes isolated from melanocytes. We show that inhibition of actin dynamics impairs the uptake of both melanocores and melanosomes. Moreover, depletion of critical proteins involved in actin-dependent uptake mechanisms, namely Rac1, CtBP1/BARS, Cdc42 or RhoA, together with inhibition of Rac1-dependent signaling pathways or macropinocytosis suggest that melanocores are internalized by phagocytosis, whereas melanosomes are internalized by macropinocytosis. Interestingly, we found that Rac1, Cdc42 and RhoA are differently activated by melanocore or melanosome stimulation, supporting the existence of two distinct internalization routes of melanin internalization. Furthermore, we show that melanocore uptake induces Protease-activated receptor-2 (PAR-2) internalization by keratinocytes to a higher extent than melanosomes. Since skin pigmentation was shown to be regulated by PAR-2 activation, our results further support the melanocore-based mechanism of melanin transfer and further refine this model, which can now be described as coupled melanocore exo/phagocytosis.
    Keywords:  Melanocore; Protease-activated receptor-2; macropinocytosis; melanosomes; phagocytosis
    DOI:  https://doi.org/10.1111/tra.12843
  3. Elife. 2022 Apr 12. pii: e72865. [Epub ahead of print]11
      Clathrin-mediated endocytosis is initiated by a network of weakly interacting proteins through a poorly understood mechanism. Ede1, the yeast homologue of mammalian Eps15, is an early-arriving endocytic protein and a key initiation factor. In the absence of Ede1, most other early endocytic proteins lose their punctate localization and endocytic uptake is decreased. We show that in yeast cells, cytosolic concentration of Ede1 is buffered at a critical level. Excess amounts of Ede1 form large condensates which recruit other endocytic proteins and exhibit properties of phase-separated liquid droplets. We demonstrate that the central region of Ede1, containing a coiled-coil and a prion-like region, is essential for both the condensate formation and the function of Ede1 in endocytosis. The functionality of Ede1 mutants lacking the central region can be partially rescued by an insertion of heterologous prion-like domains. Conversely, fusion of a heterologous lipid-binding domain with the central region of Ede1 can promote clustering into stable plasma membrane domains. We propose that the ability of Ede1 to form condensed networks supports the clustering of early endocytic proteins and promotes the initiation of endocytosis.
    Keywords:  S. cerevisiae; cell biology
    DOI:  https://doi.org/10.7554/eLife.72865
  4. Front Pharmacol. 2022 ;13 877576
      The plasma membrane transporter LAT1 (SLC7A5) is a crucial player for cell homeostasis because it is responsible for providing cells with essential amino acids and hormones. LAT1 forms a functional heterodimer with the cell surface antigen heavy chain CD98 (also known as 4F2hc and SLC3A2), a type II membrane glycoprotein, which is essential for LAT1 stability and localization to the plasma membrane. The relevance of LAT1 for human metabolism is also related to its altered expression in human diseases, such as cancer and diabetes. These features boosted research toward molecules that are able to interact with LAT1; in this respect, the recent resolution of the LAT1-CD98 3D structure by Cryo-EM has opened important perspectives in the study of the interaction with different molecules in order to identify new drugs to be used in therapy or new substrates of natural origin to be employed as adjuvants and food supplements. In this work, the interaction of LAT1 with alliin, a garlic derivative, has been investigated by using a combined approach of bioinformatics and in vitro transport assays. Alliin is a nutraceutical that has several beneficial effects on human health, such as antidiabetic, anticarcinogenic, antioxidant, and anti-inflammatory properties. The computational analysis suggested that alliin interacts with the substrate binding site of LAT1, to which alliin was docked. These data were then confirmed by the competitive type inhibition measured in proteoliposomes. Interestingly, in the same experimental model, alliin was also revealed to be a substrate of LAT1.
    Keywords:  LAT1; SLC; alliin; garlic; liposomes; membrane transport; nutraceutical
    DOI:  https://doi.org/10.3389/fphar.2022.877576
  5. J Cell Biol. 2022 Jun 06. pii: e202103069. [Epub ahead of print]221(6):
      During tissue morphogenesis, the changes in cell shape, resulting from cell-generated forces, often require active regulation of intracellular trafficking. How mechanical stimuli influence intracellular trafficking and how such regulation impacts tissue mechanics are not fully understood. In this study, we identify an actomyosin-dependent mechanism involving Rab11-mediated trafficking in regulating apical constriction in the Drosophila embryo. During Drosophila mesoderm invagination, apical actin and Myosin II (actomyosin) contractility induces apical accumulation of Rab11-marked vesicle-like structures ("Rab11 vesicles") by promoting a directional bias in dynein-mediated vesicle transport. At the apical domain, Rab11 vesicles are enriched near the adherens junctions (AJs). The apical accumulation of Rab11 vesicles is essential to prevent fragmented apical AJs, breaks in the supracellular actomyosin network, and a reduction in the apical constriction rate. This Rab11 function is separate from its role in promoting apical Myosin II accumulation. These findings suggest a feedback mechanism between actomyosin activity and Rab11-mediated intracellular trafficking that regulates the force generation machinery during tissue folding.
    DOI:  https://doi.org/10.1083/jcb.202103069
  6. Proc Natl Acad Sci U S A. 2022 Apr 19. 119(16): e2119168119
      SignificanceThe highly desmoplastic and immunosuppressive microenvironment of pancreatic tumors is a major determinant of the aggressive nature and therapeutic resistance of pancreatic cancer. Therefore, improving our understanding of the mechanisms that regulate the composition and function of the pancreatic tumor microenvironment is critical for the design of intervention strategies for this devastating malignancy. This study identifies a modality for the reprogramming of tumor-associated macrophages involving collagen scavenging followed by a metabolic switch toward a profibrotic paracrine phenotype. These findings establish a molecular framework for the elucidation of regulatory processes that could be harnessed to mitigate the stroma-dependent protumorigenic effects in pancreatic cancer.
    Keywords:  collagen; fibrosis; macrophage; pancreatic cancer; stellate cell
    DOI:  https://doi.org/10.1073/pnas.2119168119
  7. Cancers (Basel). 2022 Mar 27. pii: 1698. [Epub ahead of print]14(7):
      Exosomes are crucial extracellular vesicles (EVs) with a diameter of approximately 30-200 nm. They are released by most cell types in their extracellular milieu and carry various biomolecules, including proteins and nucleic acids. Exosomes are increasingly studied in various diseases, including cancer, due to their role in local and distant cell-cell communication in which they can promote tumor growth, cancer progression, and metastasis. Interestingly, a tremendous number of exosomes is released by malignant cancer cells, and these are then taken up by autologous and heterologous recipient stromal cells such as immune cells, cancer stem cells, and endothelial cells. All these events demand an enormous amount of energy and require that exosomes remain stable while having the capacity to reach distant sites and cross physical barriers. Nevertheless, there is a dearth of research pertaining to the energy sources of exosomes, and questions remain about how they maintain their motility in the tumor microenvironment (TME) and beyond. Moreover, exosomes can produce adenosine triphosphate (ATP), an important energy molecule required by all cells, and mitochondria have been identified as one of the exosomal cargoes. These findings strengthen the prospect of exosomal communication via transfer of mitochondria and the bioenergetics of target recipient cells. In the TME, the accumulation of ATP and lactate may facilitate the entry of exosomes into cancer cells to promote metastasis, as well as help to target cancer cells at the tumor site. This review highlights how exosomes obtain sufficient energy to thrive in the TME and communicate with distant physiological destinations.
    Keywords:  cancer; energy metabolism; exosome; extracellular vesicle; tumor microenvironment
    DOI:  https://doi.org/10.3390/cancers14071698
  8. Cells. 2022 Mar 31. pii: 1180. [Epub ahead of print]11(7):
      Despite significant advances in our understanding of the mechanisms that underlie age-related physiological decline, our ability to translate these insights into actionable strategies to extend human healthspan has been limited. One of the major reasons for the existence of this barrier is that with a few important exceptions, many of the proteins that mediate aging have proven to be undruggable. The argument put forth here is that the amenability of ion channels and transporters to pharmacological manipulation could be leveraged to develop novel therapeutic strategies to combat aging. This review delves into the established roles for ion channels and transporters in the regulation of aging and longevity via their influence on membrane excitability, Ca2+ homeostasis, mitochondrial and endolysosomal function, and the transduction of sensory stimuli. The goal is to provide the reader with an understanding of emergent themes, and prompt further investigation into how the activities of ion channels and transporters sculpt the trajectories of cellular and organismal aging.
    Keywords:  ER; aging; calcium; ion channels; lifespan; longevity; lysosomes
    DOI:  https://doi.org/10.3390/cells11071180