bims-mitrat Biomed News
on Mitochondrial transplantation and transfer
Issue of 2025–05–25
five papers selected by
Gökhan Burçin Kubat, Gulhane Health Sciences Institute



  1. Mitochondrion. 2025 Mar;pii: S1567-7249(24)00161-2. [Epub ahead of print]81 102003
      Hearing loss is a widespread and disabling condition with no current cure, underscoring the urgent need for new therapeutic approaches for treatment and prevention. A recent mitochondrial therapy approach by introducing exogenous mitochondria to the cells has shown promising results in mitigating mitochondria-related disorders. Despite the essential role of mitochondria in hearing, this novel strategy has not yet been tested for the treatment of hearing loss. More importantly, whether cochlear cells take up exogenous mitochondria and its consequence on cell bioenergetics has never been tested before. Here, we showed that exogenous mitochondria from HEI-OC1 auditory cells internalize into a new set of HEI-OC1 cells through co-incubation in a dose-dependent manner without inducing toxicity. We observed that auditory cells that received exogenous mitochondria exhibited increased bioenergetics compared to the controls that received none. Furthermore, we found that mitochondrial transplantation protects cells from oxidative stress and H2O2-induced apoptosis, while partially restoring bioenergetics diminished by H2O2 exposure. These findings support initial evidence for the feasibility and potential advantages of mitochondrial therapy in auditory cells. If successful in animal models and ultimately in humans, this novel therapy offers prominent potential for the treatment of sensorineural hearing loss.
    Keywords:  Hearing loss; Mitochondrial dysfunction; Mitochondrial transplantation
    DOI:  https://doi.org/10.1016/j.mito.2024.102003
  2. Adv Sci (Weinh). 2025 May 23. e01612
      The aberrant cellular senescence in chronic wounds presents a significant barrier to healing. Mitochondrial dysfunction is critical in initiating and maintaining cellular senescence, underscoring therapeutic potential in restoring mitochondrial function by delivering healthy mitochondria to wound cells. However, approaches for delivering mitochondria to achieve optimized wound repair remain lacking. Herein, enucleated MSCs-derived microvesicles containing functional mitochondria (Mito@euMVs) via simple extrusion are developed. By controlling the size of microvesicles within a small micron-scale range, the mitochondrial encapsulation efficiency is optimized. Mito@euMVs effectively delivered mitochondria into fibroblasts and HUVECs, inhibiting and rejuvenating hyperglycemia-induced cellular senescence. To enhance the clinical applicability, soluble PVA microneedle patches for the transdermal Mito@euMVs delivery are utilized. In diabetic rats with pressure sores, the senescence-inhibiting and -rescuing properties of Mito@euMVs are further validated, along with their therapeutic efficacy, demonstrating their potential for chronic wound repair. Moreover, as a versatile delivery vehicle for mitochondria, Mito@euMVs hold promising for treating mitochondrial dysfunction and aging-related conditions.
    Keywords:  cellular senescence; diabetic pressure sore; enucleated mesenchymal stem cells; mitochondrial transfer
    DOI:  https://doi.org/10.1002/advs.202501612
  3. Cell Commun Signal. 2025 May 20. 23(1): 232
      Mitochondria are traditionally known as the cells' powerhouses; however, their roles go far beyond energy suppliers. They are involved in intracellular signaling and thus play a crucial role in shaping cells' destiny and functionality, including immune cells. Mitochondria can be actively exchanged between immune and non-immune cells via mechanisms such as nanotubes and extracellular vesicles. The mitochondria transfer from immune cells to different cells is associated with physiological and pathological processes, including inflammatory disorders, cardiovascular diseases, diabetes, and cancer. On the other hand, mitochondrial transfer from mesenchymal stem cells, bone marrow-derived stem cells, and adipocytes to immune cells significantly affects their functions. Mitochondrial transfer can prevent exhaustion/senescence in immune cells through intracellular signaling pathways and metabolic reprogramming. Thus, it is emerging as a promising therapeutic strategy for immune system diseases, especially those involving inflammation and autoimmune components. Transferring healthy mitochondria into damaged or dysfunctional cells can restore mitochondrial function, which is crucial for cellular energy production, immune regulation, and inflammation control. Also, mitochondrial transfer may enhance the potential of current therapeutic immune cell-based therapies such as CAR-T cell therapy.
    Keywords:  Immune system; Immunometabolism; Immunotherapy; Mitochondria; Mitochondria Transfer; Organelle therapy
    DOI:  https://doi.org/10.1186/s12964-025-02237-5
  4. Mol Biol Rep. 2025 May 20. 52(1): 470
      Epilepsy is a common neurological disorder that is increasingly recognized for its significant association with mitochondrial dysfunction. This review explores the intricate relationship between mitochondrial dysfunction and epilepsy, highlighting the molecular mechanisms, diagnostic strategies, and therapeutic approaches involved. Mitochondrial abnormalities, including defects in the electron transport chain, impaired mitochondrial dynamics, disrupted autophagy, and increased oxidative stress, are implicated in epilepsy pathogenesis. The molecular mechanisms involve respiratory chain impairments, fission-fusion imbalances, inadequate mitophagy, and oxidative stress-induced neuronal excitability. The diagnosis of mitochondrial epilepsy requires a multifaceted approach, combining clinical assessment, biochemical testing, imaging, and genetic analysis, with a particular focus on mtDNA mutations. Therapeutic strategies include antiepileptic drugs with variable mitochondrial effects, the ketogenic diet, and emerging potential approaches such as antioxidants and mitochondrial-targeted therapies. Despite advances in understanding and treatment, challenges persist due to the complexity of mtDNA mutations and treatment resistance. Future directions involve gene-editing technologies, mitochondrial transplantation, and induced pluripotent stem cells, which hold promise for addressing the underlying defects and improving epilepsy management.
    Keywords:  Epilepsy; Ketogenic diet; Mitochondria; Mutation; Oxidative stress
    DOI:  https://doi.org/10.1007/s11033-025-10577-1
  5. J Transl Med. 2025 May 21. 23(1): 568
      With the discovery of intercellular mitochondrial transfer, the intricate mitochondrial regulatory networks on stem cell fate have aroused intense academic interest. Apart from capturing freely released mitochondria from donor cells, stem cells are able to receive mitochondria through tunneling nanotubes (TNTs), gap junctional channels (GJCs) and extracellular vesicles (EVs), especially when undergoing stressful conditions such as inflammation, hypoxia, chemotherapy drug exposure, and irradiation. Stem cells that are potentiated by exogenous mitochondria show enhanced potential for proliferation, differentiation, and immunomodulation. The well-tolerated nature of either autogenous or allogenous mitochondria when locally injected in the human ischemic heart has validated the safety and therapeutic potential of mitochondrial transplantation. In children diagnosed with mitochondrial DNA deletion syndrome, functional improvements have been observed when empowering their hematopoietic stem cells with maternally derived mitochondria. Apart from the widely investigated applications of mitochondrial transfer in ischemia-reperfusion injury, neurodegenerative diseases and mitochondrial diseases etc., therapeutic potentials of mitochondrial transfer in tissue repair and regeneration are equally noteworthy, though there has been no systematic summary in this regard.This review analyzed the research and development trends of mitochondrial transfer in stem cells and regenerative medicine over the past decade from a bibliometric perspective, introduced the concept and associated mechanisms of mitochondrial transfer, summarized the regulations of intercellular mitochondrial transfer on stem cell fate. Finally, the therapeutic application of mitochondrial transplantation in diseases and tissue regeneration has been reviewed, including recent clinical studies related to mitochondrial transplantation.Mitochondrial transfer shows promise in modifying and reshaping the cellular properties of stem cells, making them more conducive to regeneration. Mesenchymal stem cells (MSCs)-derived mitochondria have shown multifaceted potential in promoting the revitalization and regeneration of cardiac, cutaneous, muscular, neuronal tissue. This review integrates novel research findings on mitochondrial transfer in stem cell biology and regenerative medicine, emphasizing the crucial translational value of mitochondrial transfer in regeneration. It serves to underscore the significant impact of mitochondrial transfer and provides a valuable reference for further exploration in this field.
    Keywords:  Mitochondrial therapeutics; Mitochondrial transfer; Regenerative medicine; Stem cell fate; Tissue repair
    DOI:  https://doi.org/10.1186/s12967-025-06472-9