bims-mitrat Biomed News
on Mitochondrial transplantation and transfer
Issue of 2024–10–27
twelve papers selected by
Gökhan Burçin Kubat, Gulhane Health Sciences Institute



  1. J Vis Exp. 2024 Oct 04.
      Mitochondrial transfer is a normal physiological phenomenon that occurs widely among various types of cells. In the study to date, the most important pathway for mitochondrial transport is through tunneling nanotubes (TNTs). There have been many studies reporting that mesenchymal stem cells (MSCs) can transfer mitochondria to other cells by TNTs. However, few studies have demonstrated the phenomenon of bidirectional mitochondrial transfer. Here, our protocol describes an experimental approach to study the phenomenon of mitochondrial transfer between MSCs and retinal pigment epithelial cells in vitro by two mitochondrial tracing methods. We co-cultured mito-GFP-transfected MSCs with mito-RFP-transfected ARPE19 cells (a retinal pigment epithelial cell line) for 24 h. Then, all cells were stained with phalloidin and imaged by confocal microscopy. We observed mitochondria with green fluorescence in ARPE19 cells and mitochondria with red fluorescence in MSCs, indicating that bidirectional mitochondrial transfer occurs between MSCs and ARPE19 cells. This phenomenon suggests that mitochondrial transport is a normal physiological phenomenon that also occurs between MSCs and ARPE19 cells, and mitochondrial transfer from MSCs to ARPE19 cells occurs much more frequently than vice versa. Our results indicate that MSCs can transfer mitochondria into retinal pigment epithelium, and similarly predict that MSCs can fulfill their therapeutic potential through mitochondrial transport in the retinal pigment epithelium in the future. Additionally, mitochondrial transfer from ARPE19 cells to MSCs remains to be further explored.
    DOI:  https://doi.org/10.3791/66917
  2. J Vis Exp. 2024 Oct 04.
      Mitochondrial function, a cornerstone of cellular energy production, is critical for maintaining metabolic homeostasis. Its dysfunction in skeletal muscle is linked to prevalent metabolic disorders (e.g., diabetes and obesity), muscular dystrophies, and sarcopenia. While there are many techniques to evaluate mitochondrial content and morphology, the hallmark method to assess mitochondrial function is the measurement of mitochondrial oxidative phosphorylation (OXPHOS) by respirometry. Quantification of mitochondrial OXPHOS provides insight into the efficiency of mitochondrial oxidative energy production and cellular bioenergetics. A high-resolution respirometer provides highly sensitive, robust measurements of mitochondrial OXPHOS in permeabilized muscle fibers by measuring real-time changes in mitochondrial oxygen consumption rate. The use of permeabilized muscle fibers, as opposed to isolated mitochondria, preserves mitochondrial networks, maintains mitochondrial membrane integrity, and ultimately allows for more physiologically relevant measurements. This system also allows for the measurement of fuel preference and metabolic flexibility - dynamic aspects of muscle energy metabolism. Here, we provide a comprehensive guide for mitochondrial OXPHOS measurements in human and mouse skeletal muscle fibers using a high-resolution respirometer. Skeletal muscle groups are composed of different fiber types that vary in their mitochondrial fuel preference and bioenergetics. Using a high-resolution respirometer, we describe methods for evaluating both aerobic glycolytic and fatty acid substrates to assess fuel preference and metabolic flexibility in a fiber-type-dependent manner. The protocol is versatile and applicable to both human and rodent muscle fibers. The goal is to enhance the reproducibility and accuracy of mitochondrial function assessments, which will improve our understanding of an organelle important to muscle health.
    DOI:  https://doi.org/10.3791/66834
  3. Biochim Biophys Acta Mol Cell Res. 2024 Oct 20. pii: S0167-4889(24)00205-2. [Epub ahead of print]1872(1): 119862
      Most cancer cells show the Warburg effect, the rewiring of aerobic metabolism to glycolysis due to defective mitochondrial ATP synthesis. As a consequence, tumor cells display enhanced mitochondrial potential (∆Ψ), the driving force for mitochondrial Ca2+ uptake. Mitochondria control the Ca2+-dependent inactivation of store-operated channels (SOCs), leading to enhanced and sustained store-operated Ca2+ entry (SOCE) involved in cancer hallmarks. We asked here whether the transfer of mitochondria (mitoception) from normal cells to tumor cells may reverse SOCE remodeling in cancer cells. For this end, we labeled mitochondria in normal NCM460 human colonic cells, isolated them and transferred them to tumor HT29 cells. We tested the viability and efficiency of mitoception using flow cytometry and confocal microscopy, as well as calcium imaging to investigate the effects of mitoception on SOCE. Our results show that mitoception of tumor HT29 cells with normal mitochondria restores a low ∆Ψ and SOCE. Conversely, self-mitoception of tumor HT29 cells with tumor cell mitochondria increases further ∆Ψ and SOCE, thus excluding the possibility that effects of mitoception are due to increased mitochondrial mass. Strikingly, mitoception of normal NCM460 cells with tumor cell mitochondria has no effects on either ∆Ψ or SOCE. These results are consistent with the previous proposal that transformed mitochondria may modulate SOC channels involved in SOCE. Further research is warranted to test whether mitoception of cancer cells with normal mitochondria may reverse Ca2+ remodeling associated to cancer.
    Keywords:  Colon cancer; Mitoception; Mitochondria; Store-operated Ca(2+) entry
    DOI:  https://doi.org/10.1016/j.bbamcr.2024.119862
  4. J Nutr Health Aging. 2024 Oct 19. pii: S1279-7707(24)00485-8. [Epub ahead of print]28(12): 100397
      Sarcopenia is associated with structural, ultrastructural, and molecular abnormalities of skeletal muscle. Mitochondrial dysfunction is a pivotal factor involved in muscle aging and sarcopenia. Mitochondrial bioenergetics are significantly reduced in muscles of older adults which is associated with whole-body aerobic capacity, muscle strength, and physical performance. Transcriptional profiling of muscle samples from older adults also revealed inverse correlations between gene expression patterns of autophagy and mitophagy and muscle volume and physical performance. This is in line with the proposition that mitochondrial quality control (MQC) processes are key to organellar and tissue health. MQC encompasses mitochondrial biogenesis, dynamics, and mitophagy. The latter has recently been included among the hallmarks of aging and alterations in MQC have been associated with chronic sterile inflammation as well as muscle atrophy and dysfunction. Several biomarkers spanning MQC, inflammation, metabolism, intercellular communication, and gut microbiota have been linked to sarcopenia. Findings from these initial studies hold promise to inform geroscience-based research in the field of sarcopenia by offering a plausible biological framework for developing gerotherapeutics and monitoring their effects.
    Keywords:  Biology of aging; Extracellular vesicles; Inflammaging; Mitochondrial quality control; Multi-Marker; Omics
    DOI:  https://doi.org/10.1016/j.jnha.2024.100397
  5. NPJ Aging. 2024 Oct 21. 10(1): 46
      Cellular senescence has been implicated in many age-related pathologies including atherosclerosis, heart failure, age-related cardiac remodeling, diabetic cardiomyopathy and the metabolic syndrome. Here, we will review the characteristics of senescent cells and their endogenous regulators, and summarize the metabolic stressors that induce cell senescence. We will discuss the evidence of cell senescence in the onset and progression of several cardiometabolic diseases and the therapeutic potential of anti-senescence therapies.
    DOI:  https://doi.org/10.1038/s41514-024-00170-4
  6. Cold Spring Harb Perspect Biol. 2024 Oct 21. pii: a041514. [Epub ahead of print]
      Skeletal muscle is one of the tissues with the highest range of variability in metabolic rate, which, to a large extent, is critically dependent on tightly controlled and fine-tuned mitochondrial activity. Besides energy production, other mitochondrial processes, including calcium buffering, generation of heat, redox and reactive oxygen species homeostasis, intermediate metabolism, substrate biosynthesis, and anaplerosis, are essential for proper muscle contractility and performance. It is thus not surprising that adequate mitochondrial function is ensured by a plethora of mechanisms, aimed at balancing mitochondrial biogenesis, proteostasis, dynamics, and degradation. The fine-tuning of such maintenance mechanisms ranges from proper folding or degradation of individual proteins to the elimination of whole organelles, and in extremis, apoptosis of cells. In this review, the present knowledge on these processes in the context of skeletal muscle biology is summarized. Moreover, existing gaps in knowledge are highlighted, alluding to potential future studies and therapeutic implications.
    DOI:  https://doi.org/10.1101/cshperspect.a041514
  7. J Cachexia Sarcopenia Muscle. 2024 Oct 25.
       BACKGROUND: Astronauts in Earth's orbit experience microgravity, resulting in a decline of skeletal muscle mass and function. On Earth, models simulating microgravity have shown that the extent of the loss in muscle force is greater than the loss in muscle mass. The reasons behind this disproportionate loss of muscle force are still poorly understood. In the present study, we hypothesize that alongside the loss in skeletal muscle mass, modifications in the expression profile of genes encoding critical determinants of resting membrane potential, excitation-contraction coupling and Ca2+ handling contribute to the decline in skeletal muscle force.
    METHODS: Healthy male volunteers (n = 18) participated in a 5-day dry immersion (DI) study, an Earth-based model of simulated microgravity. Muscle force measurement and MRI analysis of the cross-sectional area of thigh muscles were performed before and after DI. Biopsies of the vastus lateralis skeletal muscle performed before and after DI were used for the determination Ca2+ properties of isolated muscle fibres, molecular and biochemical analyses.
    RESULTS: The extent of the decline in force, measured as maximal voluntary contraction of knee extensors (-11.1%, P < 0.01) was higher than the decline in muscle mass (-2.5%, P < 0.01). The decline in muscle mass was molecularly supported by a significant repression of the anabolic IGF-1/Akt/mTOR pathway (-19.9% and -40.9% in 4E-BP1 and RPS6 phosphorylation, respectively), a transcriptional downregulation of the autophagy-lysosome pathway and a downregulation in the mRNA levels of myofibrillar protein slow isoforms. At the single fibre level, biochemical and tension-pCa curve analyses showed that the loss in force was independent of fibre type (-11% and -12.3% in slow and fast fibres, respectively) and Ca2+ activation properties. Finally, we showed a significant remodelling in the expression of critical players of resting membrane potential (aquaporin 4: -24.9%, ATP1A2: +50.4%), excitation-contraction coupling (CHRNA1: +75.1%, CACNA2D1: -23.5%, JPH2: -24.2%, TRDN: -15.6%, S100A1: +27.2%), and Ca2+ handling (ATP2A2: -32.5%, CASQ1: -15%, ORAI1: -36.2%, ATP2B1: -19.1%).
    CONCLUSIONS: These findings provide evidence that a deregulation in the expression profile of critical molecular determinants of resting membrane potential, excitation-contraction coupling, and Ca2+ handling could be involved in the loss of muscle force induced by DI. They also provide the paradigm for the understanding of muscle force loss during prolonged bed rest periods as those encountered in intensive care unit.
    Keywords:  Excitation‐contraction coupling; Microgravity; Muscle atrophy; Muscle disuse; Slow and fast isoforms of myofibrillar proteins
    DOI:  https://doi.org/10.1002/jcsm.13559
  8. Nat Commun. 2024 Oct 19. 15(1): 8997
      Morphogens play a critical role in coordinating stress adaptation and aging across tissues, yet their involvement in neuronal mitochondrial stress responses and systemic effects remains unclear. In this study, we reveal that the transforming growth factor beta (TGF-β) DAF-7 is pivotal in mediating the intestinal mitochondrial unfolded protein response (UPRmt) in Caenorhabditis elegans under neuronal mitochondrial stress. Two ASI sensory neurons produce DAF-7, which targets DAF-1/TGF-β receptors on RIM interneurons to orchestrate a systemic UPRmt response. Remarkably, inducing mitochondrial stress specifically in ASI neurons activates intestinal UPRmt, extends lifespan, enhances pathogen resistance, and reduces both brood size and body fat levels. Furthermore, dopamine positively regulates this UPRmt activation, while GABA acts as a systemic suppressor. This study uncovers the intricate mechanisms of systemic mitochondrial stress regulation, emphasizing the vital role of TGF-β in metabolic adaptations that are crucial for organismal fitness and aging during neuronal mitochondrial stress.
    DOI:  https://doi.org/10.1038/s41467-024-53093-9
  9. Physiol Rep. 2024 Oct;12(20): e70088
      The aim was to examine the acute effects of sprint exercise (SIT) on global gene expression in subcutaneous adipose tissue (AT) in healthy subjects, to enhance understanding of how SIT influences body weight regulation. The hypothesis was that SIT upregulates genes involved in mitochondrial function and fat metabolism. A total of 15 subjects performed three 30-s all-out sprints (SIT). Samples were collected from AT, skeletal muscle (SM) and blood (brachial artery and a subcutaneous AT vein) up to 15 min after the last sprint. Results showed that markers of oxidative stress, such as the purines hypoxanthine, xanthine and uric acid, increased markedly by SIT in both the artery and the AT vein. Purines also increased in AT and SM tissue. Differential gene expression analysis indicated a decrease in signaling for mitochondrial-related pathways, including oxidative phosphorylation, electron transport, ATP synthesis, and heat production by uncoupling proteins, as well as mitochondrial fatty acid beta oxidation. This downregulation of genes related to oxidative metabolism suggests an early-stage inhibition of the mitochondria, potentially as a protective mechanism against SIT-induced oxidative stress.
    Keywords:  biopsy; high intensity; microarray analysis; skeletal muscle; sprint interval exercise; subcutaneous white adipose tissue; transcriptome
    DOI:  https://doi.org/10.14814/phy2.70088
  10. Sci Adv. 2024 Oct 25. 10(43): eado5887
      Cellular senescence is a stress-induced irreversible cell cycle arrest involved in tumor suppression and aging. Many stresses, such as telomere shortening and oncogene activation, induce senescence by damaging nuclear DNA. However, the mechanisms linking DNA damage to senescence remain unclear. Here, we show that DNA damage response (DDR) signaling to mitochondria triggers senescence. A genome-wide small interfering RNA screen implicated the outer mitochondrial transmembrane protein BNIP3 in senescence induction. We found that BNIP3 is phosphorylated by the DDR kinase ataxia telangiectasia mutated (ATM) and contributes to an increase in the number of mitochondrial cristae. Stable isotope labeling metabolomics indicated that the increase in cristae enhances fatty acid oxidation (FAO) to acetyl-coenzyme A (acetyl-CoA). This promotes histone acetylation and expression of the cyclin-dependent kinase inhibitor p16INK4a. Notably, pharmacological activation of FAO alone induced senescence both in vitro and in vivo. Thus, mitochondrial energy metabolism plays a critical role in senescence induction and is a potential intervention target to control senescence.
    DOI:  https://doi.org/10.1126/sciadv.ado5887
  11. J Funct Morphol Kinesiol. 2024 Oct 08. pii: 188. [Epub ahead of print]9(4):
       BACKGROUND: In volumetric muscle loss (VML) injuries, spontaneous muscle regeneration capacity is limited. The implantation of autologous adipose tissue in the affected area is an option to treat these lesions; however, the effectiveness of this therapy alone is insufficient for a complete recovery of the damaged muscle. This study examined the influence of treadmill exercise on the rehabilitation of VML injuries reconstructed with autologous adipose tissue, as a strategy to counteract the limitations of spontaneous regeneration observed in these injuries.
    METHODS: Forty adult male Wistar rats were divided into eight groups of five individuals each: normal control (NC), regenerative control (RC), VML control (VML), VML injury reconstructed with fresh autologous adipose tissue (FAT), exercise-rehabilitated control (RNC), exercise-rehabilitated regenerative control (RRC), exercise-rehabilitated VML injury (RVML), and exercise-rehabilitated VML injury reconstructed with fresh autologous adipose tissue (RFAT). Histological and histochemical staining techniques were used for the analysis of structural features and histomorphometric parameters of the tibialis anterior muscle. Grip strength tests were conducted to assess muscle force.
    RESULTS: Exercise rehabilitation decreased the proportion of disoriented fibers in RFAT vs. FAT group. The percentage of fibrosis was significantly higher in FAT and RFAT groups versus NC and RNC groups but did not vary significantly between FAT and RFAT groups. Overall, muscle grip strength and fiber size increased significantly in the exercise-rehabilitated groups compared to control groups.
    CONCLUSIONS: To conclude, rehabilitation with physical exercise tended to normalize the process of muscle repair in a model of VML injury reconstructed with fresh autologous adipose tissue, but it did not reduce the intense fibrosis associated with these injuries.
    Keywords:  adipose tissue; exercise; muscle regeneration; rehabilitation; skeletal muscle; volumetric muscle loss
    DOI:  https://doi.org/10.3390/jfmk9040188
  12. J Orthop Translat. 2024 Nov;49 49-61
      Tendinopathy is a prevalent aging-related disorder characterized by pain, swelling, and impaired function, often resulting from micro-scarring and degeneration caused by overuse or trauma. Current interventions for tendinopathy have limited efficacy, highlighting the need for innovative therapies. Mitochondria play an underappreciated and yet crucial role in tenocytes function, including energy production, redox homeostasis, autophagy, and calcium regulation. Abnormalities in mitochondrial function may lead to cellular senescence. Within this context, this review provides an overview of the physiological functions of mitochondria in tendons and presents current insights into mitochondrial dysfunction in tendinopathy. It also proposes potential therapeutic strategies that focus on targeting mitochondrial health in tenocytes. These strategies include: (1) utilizing reactive oxygen species (ROS) scavengers to mitigate the detrimental effects of aberrant mitochondria, (2) employing mitochondria-protecting agents to reduce the production of dysfunctional mitochondria, and (3) supplementing with exogenous normal mitochondria. In conclusion, mitochondria-targeted therapies hold great promise for restoring mitochondrial function and improving outcomes in patients with tendinopathy. The translational potential of this article: Tendinopathy is challenging to treat effectively due to its poorly understood pathogenesis. This review thoroughly analyzes the role of mitochondria in tenocytes and proposes potential strategies for the mitochondrial treatment of tendinopathy. These findings establish a theoretical basis for future research and the clinical translation of mitochondrial therapy for tendinopathy.
    Keywords:  Aging; Mitochondria; Stem cells; Tendinopathy; Therapeutic strategies
    DOI:  https://doi.org/10.1016/j.jot.2024.09.003