bims-mitrat Biomed News
on Mitochondrial transplantation and transfer
Issue of 2024–08–04
fourteen papers selected by
Gökhan Burçin Kubat, Gulhane Health Sciences Institute



  1. Mitochondrion. 2024 Jul 25. pii: S1567-7249(24)00097-7. [Epub ahead of print]78 101939
      Mitochondria are essential for energy supplementation and metabolic homeostasis of cancer cells. Using mitochondria transplantation to reduce the malignancy of gastric cancer (GC) cells is herein proposed. In our study normal human gastric mucous epithelium cell line (GES-1) showed a lower mitochondrial membrane potential (MMP) compared to immortalized human vascular endothelial cell line (EAhy 926) and human gastric adenocarcinoma cell line (AGS). The transplantation of GES-1 mitochondria to AGS were confirmed both by confocal microscopy and flow cytometry. After transplanting GES-1 mitochondria, the AGS showed a reduced cell migration, and invasion without affecting cell viability and apoptosis. Investigating the expression of proteins involved in epithelial-mesenchymal-transition (EMT), transplanted GES-1 mitochondria reduced the expression of mesenchymal markers α-SMA, MMP-9, snail, vimentin and N-cadherin, whereas the epithelial markers E-cadherin and clauding-1 were not changed. The proteins implicated in the cell cycle such as cyclin B1 and D1 were decreased. In mice, inoculation with AGS carrying the transplanted GES-1 mitochondria resulted in smaller sized tumors. Further investigating the mitochondrial balance, the transplanted GES-1 mitochondria were more stably preserved compared to endogenous AGS mitochondria. The MMP, ATP production and mitochondrial mass decreased in GES-1 mitochondria and the mitophagic proteins LC3 II and PINK1 were up-regulated. In conclusion the decreased malignancy of AGS was a result of exogenous GES-1 mitochondria transplantation. This suggests for a therapy with low efficiency mitochondria transplantation in the treatment of cancer cells.
    Keywords:  AGS; EMT; GES-1; Gastric cancer; Mitochondrial succession; Mitochondrial transplantation
    DOI:  https://doi.org/10.1016/j.mito.2024.101939
  2. Cell Rep. 2024 Jul 26. pii: S2211-1247(24)00880-5. [Epub ahead of print]43(8): 114551
      Ovarian cancer is characterized by early metastatic spread. This study demonstrates that carcinoma-associated mesenchymal stromal cells (CA-MSCs) enhance metastasis by increasing tumor cell heterogeneity through mitochondrial donation. CA-MSC mitochondrial donation preferentially occurs in ovarian cancer cells with low levels of mitochondria ("mito poor"). CA-MSC mitochondrial donation rescues the phenotype of mito poor cells, restoring their proliferative capacity, resistance to chemotherapy, and cellular respiration. Receipt of CA-MSC-derived mitochondria induces tumor cell transcriptional changes leading to the secretion of ANGPTL3, which enhances the proliferation of tumor cells without CA-MSC mitochondria, thus amplifying the impact of mitochondrial transfer. Donated CA-MSC mitochondrial DNA persisted in recipient tumor cells for at least 14 days. CA-MSC mitochondrial donation occurs in vivo, enhancing tumor cell heterogeneity and decreasing mouse survival. Collectively, this work identifies CA-MSC mitochondrial transfer as a critical mediator of ovarian cancer cell survival, heterogeneity, and metastasis and presents a unique therapeutic target in ovarian cancer.
    Keywords:  CP: Cancer; carcinoma-associated mesenchymal stem cells; metastasis; mitochondrial donation; ovarian cancer; oxidative phosphorylation; tumor heterogenity; tumor microenvironment
    DOI:  https://doi.org/10.1016/j.celrep.2024.114551
  3. J Control Release. 2024 Jul 29. pii: S0168-3659(24)00523-6. [Epub ahead of print]
      Ischemic stroke-induced mitochondrial dysfunction in the blood-brain barrier-forming brain endothelial cells (BECs) results in long-term neurological dysfunction post-stroke. We previously data from a pilot study where intravenous administration of human BEC (hBEC)-derived mitochondria-containing extracellular vesicles (EVs) showed a potential efficacy signal in a mouse middle cerebral artery occlusion (MCAo) model of stroke. We hypothesized that EVs harvested from donor species homologous to the recipient species (e.g., mouse) may improve therapeutic efficacy, and therefore, use of mouse BEC (mBEC)-derived EVs may improve post-stroke outcomes in MCAo mice. We investigated potential differences in the mitochondria transfer of EVs derived from the same species as the recipient cell (mBEC-EVs and recipient mBECs or hBECs-EVs and recipient hBECs) vs. cross-species EVs and recipient cells (mBEC-EVs and recipient hBECs or vice versa). Our results showed that while both hBEC- and mBEC-EVs transferred EV mitochondria, mBEC-EVs outperformed hBEC-EVs in increasing ATP levels and improved recipient mBEC mitochondrial function via increasing oxygen consumption rates. mBEC-EVs significantly reduced brain infarct volume and neurological deficit scores compared to vehicle-injected MCAo mice. The superior therapeutic efficacy of mBEC-EVs in a mouse MCAo stroke support the continued use of mBEC-EVs to optimize the therapeutic potential of mitochondria-containing EVs in preclinical mouse models.
    Keywords:  BBB protection; Brain endothelial cells (BECs); Exosomes (120 K EVs); Extracellular vesicles (EVs); Ischemic stroke; Microvesicles (20 K EVs); Mitochondria
    DOI:  https://doi.org/10.1016/j.jconrel.2024.07.065
  4. J Immunol Methods. 2024 Jul 25. pii: S0022-1759(24)00114-5. [Epub ahead of print]532 113729
      Monitoring mitochondrial function and mitochondrial quality control in tissues is a crucial aspect of understanding cellular health and dysfunction, which may inform about the pathogenesis of several conditions associated with aging, including chronic inflammatory conditions, neurodegenerative disorders and metabolic diseases. This process involves assessing the functionality, integrity, and abundance of mitochondria within cells. Several lines of evidence have explored techniques and methods for monitoring mitochondrial quality control in tissues. In this review, we summarize and provide our perspective considering the latest evidence in mitochondrial function and mitochondrial quality control in oral health and disease with a particular focus in periodontal inflammation. This research is significant for gaining insights into cellular health and the pathophysiology of periodontal disease, a dysbiosis-related, immune mediated and age-associated chronic condition representing a significant burden to US elderly population. Approaches for assessing mitochondrial health status reviewed here include assessing mitochondrial dynamics, mitophagy, mitochondrial biogenesis, oxidative stress, electron transport chain function and metabolomics. Such assessments help researchers comprehend the role of mitochondrial function in cellular homeostasis and its implications for oral diseases.
    Keywords:  Mitochondrial biogenesis; Mitochondrion; Mitophagy; Oral health; Oxidative phosphorylation; Periodontitis
    DOI:  https://doi.org/10.1016/j.jim.2024.113729
  5. Am J Physiol Cell Physiol. 2024 Jul 29.
      Skeletal muscle exhibits remarkable plasticity to adapt to stimuli such as mechanical loading. The mechanisms that regulate skeletal muscle hypertrophy due to mechanical overload have been thoroughly studied. Remarkably, our understanding of many of the molecular and cellular mechanisms that regulate hypertrophic growth were first identified using the rodent synergist ablation (SA) model and subsequently corroborated in human resistance exercise training studies. To demonstrate the utility of the SA model, we briefly summarize the hypertrophic mechanisms identified using the model and the following translation of these mechanism to human skeletal muscle hypertrophy induced by resistance exercise training.
    Keywords:  mTOR signaling; microRNAs; protein synthesis; ribosome biogenesis; satellite cell fusion
    DOI:  https://doi.org/10.1152/ajpcell.00362.2024
  6. J Muscle Res Cell Motil. 2024 Jul 31.
      Resistance exercise provides significant benefits to skeletal muscle, including hypertrophy and metabolic enhancements, supporting overall health and disease management. However, skeletal muscle responsiveness to resistance exercise is significantly reduced in conditions such as aging and diabetes. Recent reports suggest that glycation stress contributes to muscle atrophy and impaired exercise-induced muscle adaptation; however, its role in the muscle response to resistance exercise remains unclear. Therefore, in this study, we investigated whether methylglyoxal (MGO), a key factor in glycation stress, affects the acute responsiveness of skeletal muscles to resistance exercise, focusing on protein synthesis and the key signaling molecules. This study included 12 8-week-old male Sprague-Dawley rats divided into two groups: one received 0.5% MGO-supplemented drinking water (MGO group) and the other received regular water (control group). After 10 weeks, the left tibialis anterior muscle of each rat was subjected to electrical stimulation (ES) to mimic resistance exercise, with the right muscle serving as a non-stimulated control. Muscle protein-synthesis rates were evaluated with SUnSET, and phosphorylation levels of key signaling molecules (p70S6K and S6rp) were quantified using western blotting. In the control group, stimulated muscles exhibited significantly increased muscle protein synthesis and phosphorylation levels of p70S6K and S6rp. In the MGO group, these increases were attenuated, indicating that MGO treatment suppresses the adaptive response to resistance exercise. MGO diminishes the skeletal muscle's adaptive response to ES-simulated resistance exercise, affecting both muscle protein synthesis and key signaling molecules. The potential influence of glycation stress on the effectiveness of resistance exercise or ES emphasizes the need for individualized interventions in conditions of elevated glycation stress, such as diabetes and aging.
    Keywords:  Anabolic resistance; Methylglyoxal; Protein synthesis; Resistance training; Skeletal muscle
    DOI:  https://doi.org/10.1007/s10974-024-09680-w
  7. J Transl Med. 2024 Jul 29. 22(1): 691
      Extracellular vesicles (EVs) are nanosized heat-stable vesicles released by virtually all cells in the body, including tumor cells and tumor-infiltrating dendritic cells (DCs). By carrying molecules from originating cells, EVs work as cell-to-cell communicators in both homeostasis and cancer but may also represent valuable therapeutic and diagnostic tools. This review focuses on the role of tumor-derived EVs (TEVs) in the modulation of DC functions and on the therapeutic potential of both tumor- and DC-derived EVs in the context of immunotherapy and DC-based vaccine design. TEVs were originally characterized for their capability to transfer tumor antigens to DCs but are currently regarded as mainly immunosuppressive because of the expression of DC-inhibiting molecules such as PD-L1, HLA-G, PGE2 and others. However, TEVs may still represent a privileged system to deliver antigenic material to DCs upon appropriate engineering to reduce their immunosuppressive cargo or increase immunogenicity. DC-derived EVs are more promising than tumor-derived EVs since they expose antigen-loaded MHC, costimulatory molecules and NK cell-activating ligands in the absence of an immunosuppressive cargo. Moreover, DC-derived EVs possess several advantages as compared to cell-based drugs such as a higher antigen/MHC concentration and ease of manipulation and a lower sensitivity to immunosuppressive microenvironments. Preclinical models showed that DC-derived EVs efficiently activate tumor-specific NK and T cell responses either directly or indirectly by transferring antigens to tumor-infiltrating DCs. By contrast, however, phase I and II trials showed a limited clinical efficacy of EV-based anticancer vaccines. We discuss that the future of EV-based therapy depends on our capability to overcome major challenges such as a still incomplete understanding of their biology and pharmacokinetic and the lack of standardized methods for high-throughput isolation and purification. Despite this, EVs remain in the limelight as candidates for cancer immunotherapy which may outmatch cell-based strategies in the fullness of their time.
    Keywords:  Antigen delivery; Antigen presentation; DC/NK crosstalk; Exosomes; MHC; Microvesicles
    DOI:  https://doi.org/10.1186/s12967-024-05457-4
  8. Extracell Vesicles Circ Nucl Acids. 2024 Jun;5(2): 271-275
      Mitochondria dysfunction is increasingly recognized as a critical factor in various pathogenic processes. The mechanism governing mitochondrial quality control serves as an adaptive response, ensuring the preservation of mitochondrial morphology, quantity, and overall function, crucial for cell survival. The generation of mitochondria-derived vesicles (MDVs) is one of the processes of mitochondrial quality control. Recent literature has suggested MDV heterogeneity; however, the detailed characteristics of various MDV subtypes still need to be studied better. Recent studies have shown that MDVs also play a role in inter-organelle communication for mitochondria besides quality control. For instance, Hazan et al. demonstrated that functional mitochondria from Saccharomyces cerevisiae release vesicles independent of the fission machinery. These vesicles, falling within the typical size range of MDVs, were selectively loaded with mitochondrial proteins, especially with functional ATP synthase subunits. Intriguingly, these MDVs maintained membrane potential and could generate ATP. Moreover, MDVs could fuse with naïve mitochondria, transferring their ATP generation machinery. Lastly, this study revealed a potential delivery mechanism of ATP-producing vesicles, presenting a promising avenue to rejuvenate ATP-deficient mitochondria. Overall, this study unveils a novel mechanism for inter-organelle communication by vesicles, which is crucial for maintaining cellular homeostasis and could also be important in pathological conditions.
    Keywords:  F1-F0 ATP synthase; Mitochondria; inter-organelle communication; mitochondria-derived vesicle
    DOI:  https://doi.org/10.20517/evcna.2023.71
  9. Front Mol Med. 2023 ;3 1235188
      The energy demand of cardiomyocytes changes continuously in response to variations in cardiac workload. Cardiac excitation-contraction coupling is fueled primarily by adenosine triphosphate (ATP) production by oxidative phosphorylation in mitochondria. The rate of mitochondrial oxidative metabolism is matched to the rate of ATP consumption in the cytosol by the parallel activation of oxidative phosphorylation by calcium (Ca2+) and adenosine diphosphate (ADP). During cardiac workload transitions, Ca2+ accumulates in the mitochondrial matrix, where it stimulates the activity of the tricarboxylic acid cycle. In this review, we describe how mitochondria internalize and extrude Ca2+, the relevance of this process for ATP production and redox homeostasis in the healthy heart, and how derangements in ion handling cause mitochondrial and cardiomyocyte dysfunction in heart failure.
    Keywords:  calcium; cardiomyocyte; heart failure; mitochondria; reactive oxygen species; redox homeostasis
    DOI:  https://doi.org/10.3389/fmmed.2023.1235188
  10. Sci Adv. 2024 Aug 02. 10(31): eadp0443
      Mitochondrial fusion and fission accompany adaptive responses to stress and altered metabolic demands. Inner membrane fusion and cristae morphogenesis depends on optic atrophy 1 (Opa1), which is expressed in different isoforms and is cleaved from a membrane-bound, long to a soluble, short form. Here, we have analyzed the physiological role of Opa1 isoforms and Opa1 processing by generating mouse lines expressing only one cleavable Opa1 isoform or a non-cleavable variant thereof. Our results show that expression of a single cleavable or non-cleavable Opa1 isoform preserves embryonic development and the health of adult mice. Opa1 processing is dispensable under metabolic and thermal stress but prolongs life span and protects against mitochondrial cardiomyopathy in OXPHOS-deficient Cox10-/- mice. Mechanistically, loss of Opa1 processing disturbs the balance between mitochondrial biogenesis and mitophagy, suppressing cardiac hypertrophic growth in Cox10-/- hearts. Our results highlight the critical regulatory role of Opa1 processing, mitochondrial dynamics, and metabolism for cardiac hypertrophy.
    DOI:  https://doi.org/10.1126/sciadv.adp0443
  11. Acta Physiol (Oxf). 2024 Jul 30. e14208
       AIM: Parvalbumin (PV) is a primary calcium buffer in mouse fast skeletal muscle fibers. Previous work showed that PV ablation has a limited impact on cytosolic Ca2+ ([Ca2+]cyto) transients and contractile response, while it enhances mitochondrial density and mitochondrial matrix-free calcium concentration ([Ca2+]mito). Here, we aimed to quantitatively test the hypothesis that mitochondria act to compensate for PV deficiency.
    METHODS: We determined the free Ca2+ redistribution during a 2 s 60 Hz tetanic stimulation in the sarcoplasmic reticulum, cytosol, and mitochondria. Via a reaction-diffusion Ca2+ model, we quantitatively evaluated mitochondrial uptake and storage capacity requirements to compensate for PV lack and analyzed possible extracellular export.
    RESULTS: [Ca2+]mito during tetanic stimulation is greater in knock-out (KO) (1362 ± 392 nM) than in wild-type (WT) (855 ± 392 nM), p < 0.05. Under the assumption of a non-linear intramitochondrial buffering, the model predicts an accumulation of 725 μmoles/Lfiber (buffering ratio 1:11 000) in KO, much higher than in WT (137 μmoles/Lfiber, ratio 1:4500). The required transport rate via mitochondrial calcium uniporter (MCU) reaches 3 mM/s, compatible with available literature. TEM images of calcium entry units and Mn2+ quenching showed a greater capacity of store-operated calcium entry in KO compared to WT. However, levels of [Ca2+]cyto during tetanic stimulation were not modulated to variations of extracellular calcium.
    CONCLUSIONS: The model-based analysis of experimentally determined calcium distribution during tetanic stimulation showed that mitochondria can act as a buffer to compensate for the lack of PV. This result contributes to a better understanding of mitochondria's role in modulating [Ca2+]cyto in skeletal muscle fibers.
    Keywords:  calcium; mitochondria; mouse skeletal muscle fibers; parvalbumin; reaction–diffusion model
    DOI:  https://doi.org/10.1111/apha.14208
  12. Phytomedicine. 2024 Jul 28. pii: S0944-7113(24)00566-X. [Epub ahead of print]133 155908
       OBJECTIVE: Sarcopenia, as a condition of muscle mass loss and functional decline typically diagnosed in elderly individuals, severely affects human physical activity, metabolic homeostasis, and quality of life. Gui Qi Zhuang Jin Decoction (GQZJD), an approved hospital-based prescription with years of clinical application, has been demonstrated to have a notable therapeutic effect on sarcopenia. However, its potential mechanism of action in the treatment of sarcopenia remains uncertain.
    METHODS: Ultra-performance liquid chromatography paired with Q Exactive™ HF-X mass spectrometry (UPLC-QE-MS) was used to identify the ingredients of GQZJD. Subsequently, GQZJD observed the basic growth and muscles of the sarcopenia mouse, while the behavioral indicators were also tested. Muscle histopathology and serum oxidative stress biochemicals were also detected, and mitochondrial function and energy metabolism-related indicators in the gastrocnemius muscle were examined. Then, a metabolomics strategy was applied to predict possible pathways involving mitochondria by which GQZJD could improve sarcopenia. Finally, quantitative real-time polymerase chain reaction and western blot analyses were carried out to validate the effects of GQZJD on sarcopenia-induced mitochondrial dysfunction, together with uncovering the associated mechanisms.
    RESULTS: Twenty-seven ingredients absorbed into the blood (IAIBs) of GQZJD were identified using UPLC-QE-MS, which were regarded as the main active ingredients behind its sarcopenia treatment effects. GQZJD administration increased the body weight, gastrocnemius muscle mass, and autonomic activity, mitigated muscle tissue morphology and pathology; and alleviated the oxidative stress levels in sarcopenia mice. Treatment with GQZJD also decreased the mitochondrial reactive oxygen species level and serum lipid peroxide Malonaldehyde concentration. and increased the mitochondrial membrane potential, adenosine triphosphate level, 8‑hydroxy-2-deoxyguanosine content, mitochondrial DNA copy number, and the mitochondrial fission factor dynamin-related protein 1. Non-targeted metabolomics suggested that the sarcopenia therapeutic effect of GQZJD on sarcopenia may occur through the glycerophospholipid metabolism, choline metabolism in cancer, phenylalanine metabolism and tyrosine metabolism pathways, implying an association with AMP-activated protein kinase (AMPK) and related signals. Further, the molecular docking results hinted that AMPK performed well in terms of binding energy with the 27 IAIBs of GQZJD (average binding energy, -7.5 kcal/mol). Finally, we determined that GQZJD significantly activated the key targets of the AMPK/peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α)/nuclear factor erythroid 2-related factor 2 (Nrf2) axis..
    CONCLUSIONS: Our results demonstrated that GQZJD ameliorated d-galactose-induced sarcopenia by promoting the animal behaviours, facilitating mitochondrial function and restoring mitochondrial energy metabolism. with its effects mediated by the AMPK/PGC-1α/Nrf2 axis. Over all, GQZJD represents a promising therapeutic candidate that ameliorated sarcopenia in aging mice.
    Keywords:  AMPK/PGC-1α/Nrf2 signal axis, Mitochondria; Gui Qi Zhuang Jin Decoction; Sarcopenia
    DOI:  https://doi.org/10.1016/j.phymed.2024.155908
  13. Skelet Muscle. 2024 Aug 02. 14(1): 18
       BACKGROUND: Older adults exhibit a slower recovery of muscle mass following disuse atrophy than young adults. At a smaller scale, muscle fibre cross-sectional area (i.e., sarcomeres in parallel) exhibits this same pattern. Less is known, however, about age-related differences in the recovery of muscle fibre length, driven by increases in serial sarcomere number (SSN), following disuse. The purpose of this study was to investigate age-related differences in SSN adaptations and muscle mechanical function during and following muscle immobilization. We hypothesized that older adult rats would experience a similar magnitude of SSN loss during immobilization, however, take longer to recover SSN than young following cast removal, which would limit the recovery of muscle mechanical function.
    METHODS: We casted the plantar flexors of young (8 months) and old (32 months) male rats in a shortened position for 2 weeks, and assessed recovery during 4 weeks of voluntary ambulation. Following sacrifice, legs were fixed in formalin for measurement of soleus SSN and physiological cross-sectional area (PCSA) with the un-casted soleus acting as a control. Ultrasonographic measurements of pennation angle (PA) and muscle thickness (MT) were conducted weekly. In-vivo active and passive torque-angle relationships were constructed pre-cast, post-cast, and following 4 weeks of recovery.
    RESULTS: From pre- to post-cast, young and older adult rats experienced similar decreases in SSN (-20%, P < 0.001), muscle wet weight (-25%, P < 0.001), MT (-30%), PA (-15%, P < 0.001), and maximum isometric torque (-40%, P < 0.001), but there was a greater increase in passive torque in older (+ 180%, P < 0.001) compared to young adult rats (+ 68%, P = 0.006). Following cast removal, young exhibited quicker recovery of SSN and MT than old, but SSN recovered sooner than PA and MT in both young and old. PCSA nearly recovered and active torque fully recovered in young adult rats, whereas in older adult rats these remained unrecovered at ∼ 75%.
    CONCLUSIONS: This study showed that older adult rats retain a better ability to recover longitudinal compared to parallel muscle morphology following cast removal, making SSN a highly adaptable target for improving muscle function in elderly populations early on during rehabilitation.
    Keywords:  Fascicle length; Force-length relationship; Muscle architecture; Muscle thickness; Pennation angle; Sarcomere length
    DOI:  https://doi.org/10.1186/s13395-024-00351-5