bims-mitrat Biomed News
on Mitochondrial transplantation and transfer
Issue of 2024–07–21
twelve papers selected by
Gökhan Burçin Kubat, Gulhane Health Sciences Institute



  1. Cardiovasc Toxicol. 2024 Jul 16.
      The hallmark of aluminum phosphide (AlP) poisoning is heart failure in victims which is associated with reactive oxygen species (ROS), mitochondrial dysfunction, oxidative stress, alteration in antioxidant defense system and depletion of ATP in cardiomyocytes. In the present study, we hypothesized that the injection of isolated mitochondria into blood or mitochondrial transplantation can likely create a primary target for phosphine released from AlP and inhibit AlP-induced mortality and cardiotoxicity in rat. Male, Wistar, healthy and adult rats were randomly divided into 5 groups as control, AlP (12.5 mg/kg, orally), AlP + mitochondria (125 µg/kg), AlP + mitochondria (250 µg/kg) and mitochondria (250 µg/kg) alone. Functional and intact mitochondria isolated from rat heart and transplantation was carried out via tail vein, 30 min after exposure to AlP. Survival rate, histopathological alterations, cardiac biochemical markers, oxidative stress and mitochondrial toxicity parameters were monitored and analyzed during 30 days. We found that injection of healthy mitochondria into blood at concentrations of 125 and 250 125 µg/ml significantly increased the survival of rats up to 40% and 56.25% respectively, during 30 days. Moreover, we observed that mitochondria injection into blood decreased histopathological damages, cardiac biochemical markers, oxidative stress and mitochondrial toxicity parameters. To our knowledge, the current study is the first report in the literature that demonstrated good therapeutic effects of mitochondrial transplantation in AlP-induced mortality and cardiotoxicity. The findings of the present study suggests that injection of exogenous mitochondria into blood could be an effective therapeutic strategy in treating AlP poisoning.
    Keywords:  Cardiovascular Disorders; Mitochondria Replenishment; Mitochondrial Toxicity; Pesticides; Poisoning
    DOI:  https://doi.org/10.1007/s12012-024-09896-9
  2. Mitochondrion. 2024 Jul 11. pii: S1567-7249(24)00093-X. [Epub ahead of print]78 101935
      In recent years, research has increasingly focused on the biogenesis of extracellular vesicles (EVs) and the sorting mechanisms for their contents. Mitochondria can be selectively loaded into EVs, serving as a way to maintain cellular mitochondrial homeostasis. EV-mediated mitochondrial transfer has also been shown to greatly impact the function of target cells. Based on the mechanism of EV-mediated mitochondrial transfer, therapies can be developed to treat human diseases. This review summarizes the recent advances in the biogenesis and molecular composition of EVs. It also highlights the sorting and trafficking mechanisms of mitochondrial components into EVs. Furthermore, it explores the current role of EV-mediated mitochondrial transfer in the development of human diseases, as well as its diagnostic and therapeutic applications.
    Keywords:  Extracellular vesicles; Mitochondria-derived vesicles; Mitochondrial quality control; Mitochondrial transfer
    DOI:  https://doi.org/10.1016/j.mito.2024.101935
  3. Stem Cell Rev Rep. 2024 Jul 17.
      Duchenne muscular dystrophy (DMD) is a severe X-linked disorder characterized by dystrophin gene mutations and mitochondrial dysfunction, leading to progressive muscle weakness and premature death of DMD patients. We developed human Dystrophin Expressing Chimeric (DEC) cells, created by the fusion of myoblasts from normal donors and DMD patients, as a foundation for DT-DEC01 therapy for DMD. Our preclinical studies on mdx mouse models of DMD revealed enhanced dystrophin expression and functional improvements in cardiac, respiratory, and skeletal muscles after systemic intraosseous DEC administration. The current study explored the feasibility of mitochondrial transfer and fusion within the created DEC cells, which is crucial for developing new therapeutic strategies for DMD. Following mitochondrial staining with MitoTracker Deep Red and MitoTracker Green dyes, mitochondrial fusion and transfer was assessed by Flow cytometry (FACS) and confocal microscopy. The PEG-mediated fusion of myoblasts from normal healthy donors (MBN/MBN) and normal and DMD-affected donors (MBN/MBDMD), confirmed the feasibility of myoblast and mitochondrial fusion and transfer. The colocalization of the mitochondrial dyes MitoTracker Deep Red and MitoTracker Green confirmed the mitochondrial chimeric state and the creation of chimeric mitochondria, as well as the transfer of healthy donor mitochondria within the created DEC cells. These findings are unique and significant, introducing the potential of DT-DEC01 therapy to restore mitochondrial function in DMD patients and in other diseases where mitochondrial dysfunction plays a critical role.
    Keywords:  Chimeric mitochondria; DMD therapy; Dystrophin expressing chimeric (DEC) cells; Mitochondria in DMD; Mitochondrial fusion; Mitochondrial transfer
    DOI:  https://doi.org/10.1007/s12015-024-10756-w
  4. Pharmacol Res. 2024 Jul 14. pii: S1043-6618(24)00252-4. [Epub ahead of print]206 107307
      Extracellular vesicles (EVs), secreted by most cells, act as natural cell-derived carriers for delivering proteins, nucleic acids, and organelles between cells. Mitochondria are highly dynamic organelles responsible for energy production and cellular physiological processes. Recent evidence has highlighted the pivotal role of EVs in intercellular mitochondrial content transfer, including mitochondrial DNA (mtDNA), proteins, and intact mitochondria. Intriguingly, mitochondria are crucial mediators of EVs release, suggesting an interplay between EVs and mitochondria and their potential implications in physiology and pathology. However, in this expanding field, much remains unknown regarding the function and mechanism of crosstalk between EVs and mitochondria and the transport of mitochondrial EVs. Herein, we shed light on the physiological and pathological functions of EVs and mitochondria, potential mechanisms underlying their interactions, delivery of mitochondria-rich EVs, and their clinical applications in regenerative medicine.
    Keywords:  Extracellular vesicles; Mitochondria; Mitochondrial transfer; Regenerative medicine
    DOI:  https://doi.org/10.1016/j.phrs.2024.107307
  5. J Cachexia Sarcopenia Muscle. 2024 Jul 15.
       BACKGROUND: Mitochondria represent key organelles influencing cellular homeostasis and have been implicated in the signalling events regulating protein synthesis.
    METHODS: We examined whether mitochondrial bioenergetics (oxidative phosphorylation and reactive oxygen species (H2O2) emission, ROS) measured in vitro in permeabilized muscle fibres represent regulatory factors for integrated daily muscle protein synthesis rates and skeletal muscle mass changes across the spectrum of physical activity, including free-living and bed-rest conditions: n = 19 healthy, young men (26 ± 4 years, 23.4 ± 3.3 kg/m2) and following 12 weeks of resistance-type exercise training: n = 10 healthy older men (70 ± 3 years, 25.2 ± 2.1 kg/m2). Additionally, we evaluated the direct relationship between attenuated mitochondrial ROS emission and integrated daily myofibrillar and sarcoplasmic protein synthesis rates in genetically modified mice (mitochondrial-targeted catalase, MCAT).
    RESULTS: Neither oxidative phosphorylation nor H2O2 emission were associated with muscle protein synthesis rates in healthy young men under free-living conditions or following 1 week of bed rest (both P > 0.05). Greater increases in GSSG concentration were associated with greater skeletal muscle mass loss following bed rest (r = -0.49, P < 0.05). In older men, only submaximal mitochondrial oxidative phosphorylation (corrected for mitochondrial content) was positively associated with myofibrillar protein synthesis rates during exercise training (r = 0.72, P < 0.05). However, changes in oxidative phosphorylation and H2O2 emission were not associated with changes in skeletal muscle mass following training (both P > 0.05). Additionally, MCAT mice displayed no differences in myofibrillar (2.62 ± 0.22 vs. 2.75 ± 0.15%/day) and sarcoplasmic (3.68 ± 0.35 vs. 3.54 ± 0.35%/day) protein synthesis rates when compared with wild-type mice (both P > 0.05).
    CONCLUSIONS: Mitochondrial oxidative phosphorylation and reactive oxygen emission do not seem to represent key factors regulating muscle protein synthesis or muscle mass regulation across the spectrum of physical activity.
    Keywords:  Aging; Muscle protein synthesis; Physical inactivity; Reactive oxygen species; Skeletal muscle
    DOI:  https://doi.org/10.1002/jcsm.13532
  6. Exp Gerontol. 2024 Jul 18. pii: S0531-5565(24)00165-7. [Epub ahead of print]194 112523
      Skeletal muscle aging in rats is a reduction in skeletal muscle mass caused by a decrease in the number or volume of skeletal muscle myofibers. Apoptosis has been recognized to play a key role in accelerating the process of skeletal muscle aging in rats. The thioredoxin (Trx) system is a widely expressed oxidoreductase system that controls the cellular reduction/oxidation state and has both potent anti-free radical damage and important pro-growth and apoptosis inhibitory functions. Previous studies have shown that exercise delays skeletal muscle aging. However, it is unclear whether exercise attenuates skeletal muscle aging via the Trx system. Therefore, the present study used the Trx system as an entry point to explore the effect of aerobic exercise to improve skeletal muscle aging in rats and its possible mechanisms, and to provide a theoretical basis for exercise to delay skeletal muscle aging in rats. It was shown that aerobic exercise in senescent rats resulted in increased gastrocnemius index, decreased body weight, increased endurance, decreased skeletal muscle cell apoptosis, increased activity and protein expression of the Trx system, and decreased expression of p38 and ASK1. Based on these findings, we conclude that 10 weeks of aerobic exercise may enhance the anti-apoptotic effect of Trx by up-regulating Trx and Trx reductase (TR) protein expression, which in turn increases Trx activity in rat skeletal muscle, and ultimately alleviates apoptosis in senescent skeletal muscle cells.
    Keywords:  Aerobic exercise; Apoptosis; Sarcopenia; Skeletal muscle; TR; Trx
    DOI:  https://doi.org/10.1016/j.exger.2024.112523
  7. Am J Physiol Cell Physiol. 2024 Jul 16.
      Cancer cachexia, the unintentional loss of lean mass, contributes to functional dependency, poor treatment outcomes, and decreased survival. While its pathogenicity is multifactorial, metabolic dysfunction remains a hallmark of cachexia. However, significant knowledge gaps exist in understanding the role of skeletal muscle lipid metabolism and dynamics in this condition. We examined skeletal muscle metabolic dysfunction, intramyocellular LD content, LD morphology and subcellular distribution, and LD-mitochondrial interactions using the Lewis Lung Carcinoma (LLC) murine model of cachexia. C57/BL6 male mice (n=20) were implanted with LLC cells [106] in the right flank or underwent PBS sham injections. Skeletal muscle was excised for transmission electron microscopy (TEM; soleus), oil red o/lipid staining (tibialis anterior), and protein (gastrocnemius). LLC mice had a greater number (232%; p=0.006) and size (130%; p=0.023) of intramyocellular LDs further supported by increased oil-red O positive (87%; p=0.0109) and 'very high' oil-red O positive (178%; p=0.0002) fibers compared to controls and this was inversely correlated with fiber size (R2=0.5294; p<0.0001). Morphological analyses of LDs show increased elongation and complexity (aspect ratio: IMF: 9%, p=0.046) with decreases in circularity (circularity: SS: 6%, p=0.042) or roundness (roundness: Whole: 10%, p=0.033; IMF: 8%, p=0.038) as well as decreased LD-mitochondria touch (-15%; p=0.006), contact length (-38%; p=0.036), and relative contact (86%; p=0.004). Further, dysregulation in lipid metabolism (adiponectin, CPT-1b) and LD-associated proteins, perilipin-2 and perilipin-5, in cachectic muscle (p<0.05) were observed. Collectively, we provide evidence that skeletal muscle myosteatosis, altered LD morphology, and decreased LD-mitochondrial interactions occur in a preclinical model of cancer cachexia.
    Keywords:  Lewis Lung Carcinoma; high-fat diet; lipid deposition; lipid metabolism; muscle wasting
    DOI:  https://doi.org/10.1152/ajpcell.00345.2024
  8. Cardiovasc Diabetol. 2024 Jul 18. 23(1): 261
      Mitochondria play a central role in cellular energy metabolism, and their dysfunction is increasingly recognized as a critical factor in the pathogenesis of diabetes-related cardiac pathophysiology, including vulnerability to ischemic events that culminate in myocardial infarction on the one hand and ventricular arrhythmias on the other. In diabetes, hyperglycemia and altered metabolic substrates lead to excessive production of reactive oxygen species (ROS) by mitochondria, initiating a cascade of oxidative stress that damages mitochondrial DNA, proteins, and lipids. This mitochondrial injury compromises the efficiency of oxidative phosphorylation, leading to impaired ATP production. The resulting energy deficit and oxidative damage contribute to functional abnormalities in cardiac cells, placing the heart at an increased risk of electromechanical dysfunction and irreversible cell death in response to ischemic insults. While cardiac mitochondria are often considered to be relatively autonomous entities in their capacity to produce energy and ROS, their highly dynamic nature within an elaborate network of closely-coupled organelles that occupies 30-40% of the cardiomyocyte volume is fundamental to their ability to exert intricate regulation over global cardiac function. In this article, we review evidence linking the dynamic properties of the mitochondrial network to overall cardiac function and its response to injury. We then highlight select studies linking mitochondrial ultrastructural alterations driven by changes in mitochondrial fission, fusion and mitophagy in promoting cardiac ischemic injury to the diabetic heart.
    Keywords:  Arrhythmia; Diabetes; Ischemia; Ischemia-reperfusion injury; Mitochondria; Mitochondrial dynamics; ROS (reactive oxygen species); ROS-induced ROS-release
    DOI:  https://doi.org/10.1186/s12933-024-02357-1
  9. J Appl Physiol (1985). 2024 Jul 15.
      Exercise training is considered a non-pharmacological therapeutic approach for many diseases. Mild-to-moderate endurance exercise training is suggested to improve the mental and physical state of people with Amyotrophic Lateral Sclerosis (ALS). The aim of the present study was to determine the capacity of symptomatic rNLS8 mice, which develop ALS-reminiscent TAR DNA-binding protein 43 (TDP-43) pathology and motor dysfunction, to perform mild-to-moderate intensity treadmill exercise training and to evaluate the effects of this training on skeletal muscle health and disease progression. Symptomatic rNLS8 mice were able to complete four weeks of mild-to-moderate treadmill running (30 min at 6-13 m/min, 3 days a week). Exercise training induced an increase in the percentage of type IIA fibers in the tibialis anterior muscle as well as minor adaptations in molecular markers of myogenic, mitochondrial and neuromuscular junction health in some forelimb and hindlimb muscles. However, this exercise training protocol did not attenuate the loss in motor function or delay disease progression. Alternative exercise regimes need to be investigated to better understand the role exercise training may play in alleviating symptoms of ALS.
    Keywords:  amyotrophic lateral sclerosis; motor neuron disease; muscle fiber type transition; rNLS8 mice; treadmill running
    DOI:  https://doi.org/10.1152/japplphysiol.00192.2023
  10. Physiol Res. 2024 Jul 17. 73(3): 369-379
      The skeletal muscle is the main organ responsible for insulin action, and glucose disposal and metabolism. Endurance and/or resistance training raises the number of mitochondria in diabetic muscles. The details of these adaptations, including mitochondrial adaptations of the slow and fast muscles in diabetes, are unclear. This study aimed to determine whether exercise training in streptozotocin (STZ)-induced mice leads to differential adaptations in the slow and fast muscles, and improving glucose clearance. Eight-week-old mice were randomly distributed into normal control (CON), diabetes (DM), and diabetes and exercise (DM+Ex) groups. In the DM and DM+Ex groups, mice received a freshly prepared STZ (100 mg/kg) intraperitoneal injection on two consecutive days. Two weeks after the injection, the mice in the groups ran on a treadmill for 60 min at 20 m/min for a week and subsequently at 25 m/min for 5 weeks (5 days/week). The analyses indicated that running training at low speed (25 m/min) enhanced mitochondrial enzyme activity and expression of lactate and glucose transporters in the plantaris (low-oxidative) muscle that improved whole-body glucose metabolism in STZ-induced diabetic mice. There were no differences in glucose transporter expression levels in the soleus (high-oxidative) muscle. The endurance running exercise at 20-25 m/min was sufficient to induce mitochondrial adaptation in the low-oxidative muscles, but not in the high-oxidative muscles, of diabetic mice. In conclusion, the present study indicated that running training at 25 m/min improved glucose metabolism by increasing the mitochondrial enzyme activity and glucose transporter 4 and monocarboxylate transporter 4 protein contents in the low-oxidative muscles in STZ-induced diabetic mice.
  11. Bio Protoc. 2024 Jul 05. 14(13): e5028
      Mitochondria are vital organelles essential for cellular functions, but their lipid composition and response to stressors are not fully understood. Recent advancements in lipidomics reveal insights into lipid functions, especially their roles in metabolic perturbations and diseases. Previous methods have focused on the protein composition of mitochondria and mitochondrial-associated membranes. The advantage of our technique is that it combines organelle isolation with targeted lipidomics, offering new insights into the composition and dynamics of these organelles in pathological conditions. We developed a mitochondria isolation protocol for L6 myotubes, enabling lipidomics analysis of specific organelles without interference from other cellular compartments. This approach offers a unique opportunity to dissect lipid dynamics within mitochondria and their associated ER compartments under cellular stress. Key features • Analysis and quantification of lipids in mitochondria-ER fraction through liquid chromatography-tandem mass spectrometry-based lipidomics (LC-MS/MS lipidomics). • LC-MS/MS lipidomics provide precise and unbiased information on the lipid composition in in vitro systems. • LC-MS/MS lipidomics facilitates the identification of lipid signatures in mammalian cells.
    Keywords:  Cardiolipin; Ceramides; Endoplasmic reticulum; Lipidomics; Mitochondria; Subcellular fractionation
    DOI:  https://doi.org/10.21769/BioProtoc.5028
  12. Acta Physiol (Oxf). 2024 Jul 18. e14203
       AIM: The present study aimed to investigate the effects of a single bout of resistance exercise on mitophagy in human skeletal muscle (SkM).
    METHODS: Eight healthy men were recruited to complete an acute bout of one-leg resistance exercise. SkM biopsies were obtained one hour after exercise in the resting leg (Rest-leg) and the contracting leg (Ex-leg). Mitophagy was assessed using protein-related abundance, transmission electron microscopy (TEM), and fluorescence microscopy.
    RESULTS: Our results show that acute resistance exercise increased pro-fission protein phosphorylation (DRP1Ser616) and decreased mitophagy markers such as PARKIN and BNIP3L/NIX protein abundance in the Ex-leg. Additionally, mitochondrial complex IV decreased in the Ex-leg when compared to the Rest-leg. In the Ex-leg, TEM and immunofluorescence images showed mitochondrial cristae abnormalities, a mitochondrial fission phenotype, and increased mitophagosome-like structures in both subsarcolemmal and intermyofibrillar mitochondria. We also observed increased mitophagosome-like structures on the subsarcolemmal cleft and mitochondria in the extracellular space of SkM in the Ex-leg. We stimulated human primary myotubes with CCCP, which mimics mitophagy induction in the Ex-leg, and found that BNIP3L/NIX protein abundance decreased independently of lysosomal degradation. Finally, in another human cohort, we found a negative association between BNIP3L/NIX protein abundance with both mitophagosome-like structures and mitochondrial cristae density in the SkM.
    CONCLUSION: The findings suggest that a single bout of resistance exercise can initiate mitophagy, potentially involving mitochondrial ejection, in human skeletal muscle. BNIP3L/NIX is proposed as a sensitive marker for assessing mitophagy flux in SkM.
    Keywords:  BNIP3L/NIX; mitochondria cristae; mitochondria dynamics; mitophagy
    DOI:  https://doi.org/10.1111/apha.14203