bims-mitrat Biomed News
on Mitochondrial transplantation and transfer
Issue of 2024–07–14
thirteen papers selected by
Gökhan Burçin Kubat, Gulhane Health Sciences Institute



  1. Autophagy Rep. 2024 Mar 11. 3(1): 2326402
      PINK1, mutated in familial forms of Parkinson's disease, initiates mitophagy following mitochondrial depolarization. However, it is difficult to monitor this pathway physiologically in mice as loss of PINK1 does not alter basal mitophagy levels in most tissues. To further characterize this pathway in vivo, we used mito-QC mice in which loss of PINK1 was combined with the mitochondrial-associated POLGD257A mutation. We focused on skeletal muscle as gene expression data indicates that this tissue has the highest PINK1 levels. We found that loss of PINK1 in oxidative hindlimb muscle significantly reduced mitophagy. Of interest, the presence of the POLGD257A mutation, while having a minor effect in most tissues, restored levels of muscle mitophagy caused by the loss of PINK1. Although our observations highlight that multiple mitophagy pathways operate within a single tissue, we identify skeletal muscle as a tissue of choice for the study of PINK1-dependant mitophagy under basal conditions.
    Keywords:  PINK1; POLG; Parkinson’s; mitophagy; muscle; mutator
    DOI:  https://doi.org/10.1080/27694127.2024.2326402
  2. Stem Cell Rev Rep. 2024 Jul 08.
      Regenerative medicine aims to restore, replace, and regenerate human cells, tissues, and organs. Despite significant advancements, many cell therapy trials for cardiovascular diseases face challenges like cell survival and immune compatibility, with benefits largely stemming from paracrine effects. Two promising therapeutic tools have been recently emerged in cardiovascular diseases: extracellular vesicles (EVs) and mitochondrial transfer. Concerning EVs, the first pivotal study with EV-enriched secretome derived from cardiovascular progenitor cells has been done treating heart failure. This first in man demonstrated the safety and feasibility of repeated intravenous infusions and highlighted significant clinical improvements, including enhanced cardiac function and reduced symptoms in heart failure patients. The second study uncovered a novel mechanism of endothelial regeneration through mitochondrial transfer via tunneling nanotubes (TNTs). This research showed that mesenchymal stromal cells (MSCs) transfer mitochondria to endothelial cells, significantly enhancing their bioenergetics and vessel-forming capabilities. This mitochondrial transfer was crucial for endothelial cell engraftment and function, offering a new strategy for vascular regeneration without the need for additional cell types. Combining EV and mitochondrial strategies presents new clinical opportunities. These approaches could revolutionize regenerative medicine, offering new hope for treating cardiovascular and other degenerative diseases. Continued research and clinical trials will be crucial in optimizing these therapies, potentially leading to personalized medicine approaches that enhance patient outcomes.
    Keywords:  ECFCs; Extracellular vesicles; Heart failure; Mitochondria; Regeneration; Stem cells
    DOI:  https://doi.org/10.1007/s12015-024-10758-8
  3. Eur J Appl Physiol. 2024 Jul 09.
      Resistance training activates mammalian target of rapamycin (mTOR) pathway of hypertrophy for strength gain, while endurance training increases peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) pathway of mitochondrial biogenesis benefiting oxidative phosphorylation. The conventional view suggests that resistance training-induced hypertrophy signaling interferes with endurance training-induced mitochondrial remodeling. However, this idea has been challenged because acute leg press and knee extension in humans enhance both muscle hypertrophy and mitochondrial remodeling signals. Thus, we first examined the muscle mitochondrial remodeling and hypertrophy signals with endurance training and resistance training, respectively. In addition, we discussed the influence of resistance training on muscle mitochondria, demonstrating that the PGC-1α-mediated muscle mitochondrial adaptation and hypertrophy occur simultaneously. The second aim was to discuss the integrative effects of concurrent training, which consists of endurance and resistance training sessions on mitochondrial remodeling. The study found that the resistance training component does not reduce muscle mitochondrial remodeling signals in concurrent training. On the contrary, concurrent training has the potential to amplify skeletal muscle mitochondrial biogenesis compared to a single exercise model. Concurrent training involving differential sequences of resistance and endurance training may result in varied mitochondrial biogenesis signals, which should be linked to the pre-activation of mTOR or PGC-1α signaling. Our review proposed a mechanism for mTOR signaling that promotes PGC-1α signaling through unidentified pathways. This mechanism may be account for the superior muscle mitochondrial remodeling change following the concurrent training. Our review suggested an interaction between resistance training and endurance training in skeletal muscle mitochondrial adaptation.
    Keywords:  Concurrent training; Mitochondrial biogenesis; Skeletal muscle
    DOI:  https://doi.org/10.1007/s00421-024-05549-5
  4. Biol Lett. 2024 Jul;20(7): 20240147
      The nucleus interacts with the other organelles to perform essential functions of the eukaryotic cell. Mitochondria have their own genome and communicate back to the nucleus in what is known as mitochondrial retrograde response. Information is transferred to the nucleus in many ways, leading to wide-ranging changes in nuclear gene expression and culminating with changes in metabolic, regulatory or stress-related pathways. RNAs are emerging molecules involved in this signalling. RNAs encode precise information and are involved in highly target-specific signalling, through a wide range of processes known as RNA interference. RNA-mediated mitochondrial retrograde response requires these molecules to exit the mitochondrion, a process that is still mostly unknown. We suggest that the proteins/complexes translocases of the inner membrane, polynucleotide phosphorylase, mitochondrial permeability transition pore, and the subunits of oxidative phosphorylation complexes may be responsible for RNA export.
    Keywords:  mito-nuclear interactions; mitochondrial export; mitochondrial retrograde response; regulatory RNAs; small mitochondrial highly transcribed RNAs
    DOI:  https://doi.org/10.1098/rsbl.2024.0147
  5. Adv Biol (Weinh). 2024 Jul 09. e2300445
      Aging and regeneration are opposite cellular processes. Aging refers to progressive dysfunction in most cells and tissues, and regeneration refers to the replacement of damaged or dysfunctional cells or tissues with existing adult or somatic stem cells. Various studies have shown that aging is accompanied by decreased regenerative abilities, indicating a link between them. The performance of any cellular process needs to be supported by the energy that is majorly produced by mitochondria. Thus, mitochondria may be a link between aging and regeneration. It should be interesting to discuss how mitochondria behave during aging and regeneration. The changes of mitochondria in aging and regeneration discussed in this review can provide a timely and necessary study of the causal roles of mitochondrial homeostasis in longevity and health.
    Keywords:  mitochondrial homeostasis; mitochondrial oxidative respiration; mtROS; regeneration; senescence
    DOI:  https://doi.org/10.1002/adbi.202300445
  6. J Physiol. 2024 Jul 06.
      
    Keywords:  ageing; magnetic resonance; mitochondria; sarcopenia; skeletal muscle
    DOI:  https://doi.org/10.1113/JP285040
  7. Cells. 2024 Jul 02. pii: 1135. [Epub ahead of print]13(13):
      Skin provides a physical and immune barrier to protect the body from foreign substances, microbial invasion, and desiccation. Aging reduces the barrier function of skin and its rate of repair. Aged skin exhibits decreased mitochondrial function and prolonged low-level inflammation that can be seen in other organs with aging. Peroxisome proliferator-activated receptor (PPAR)-γ coactivator-1α (PGC-1α), an important transcriptional coactivator, plays a central role in modulating mitochondrial function and antioxidant production. Mitochondrial function and inflammation have been linked to epidermal function, but the mechanisms are unclear. The aim of this review is to discuss the mechanisms by which PGC-1α might exert a positive effect on aged skin barrier function. Initially, we provide an overview of the function of skin under physiological and aging conditions, focusing on the epidermis. We then discuss mitochondrial function, oxidative stress, cellular senescence, and inflamm-aging, the chronic low-level inflammation observed in aging individuals. Finally, we discuss the effects of PGC-1α on mitochondrial function, as well as the regulation and role of PGC-1α in the aging epidermis.
    Keywords:  aging; antioxidant defense; coactivator; epidermis; keratinocytes; melanocytes; mitochondria; permeability barrier; skin; wound healing
    DOI:  https://doi.org/10.3390/cells13131135
  8. Appl Physiol Nutr Metab. 2024 Jul 09.
      Mitochondrial dysfunction is implicated in heat-induced skeletal muscle injury and its underlying mechanisms remain unclear. Evidence suggests that cellular ions and molecules, including divalent cations and adenine nucleotides, are involved in the regulation of mitochondrial function. In this study, we examined Ca2+, Mg2+, and NAD+ levels in mouse C2C12 myoblasts and skeletal muscle in response to heat exposure. During heat exposure, mitochondrial Ca2+ levels increased significantly, whereas cytosolic C2+ levels remained unaltered. The mitochondrial Ca2+ levels in the skeletal muscle of heat-exposed mice were 28% higher, compared to control mice. No changes in cytosolic Ca2+ were detected between the two groups. Following heat exposure, cytosolic and mitochondrial Mg2+ levels were reduced by 47% and 23% in C2C12 myoblasts, and by 51% and 44% in mouse skeletal muscles, respectively. In addition, heat exposure decreased mitochondrial NAD+ levels by 32% and 26% in C2C12 myoblasts and mouse skeletal muscles, respectively. Treatment with the NAD+ precursor nicotinamide riboside (NR) partially prevented heat-induced depletion of NAD+. Additionally, NR significantly reduced heat-increased mitochondrial fission, mitochondrial depolarization, and apoptosis in C2C12 myoblasts and mouse skeletal muscles. No effects of NR on heat-induced changes in intracellular Ca2+ and Mg2+ levels were observed. This study provides the in vitro and in vivo evidence that acute heat stress causes alterations in mitochondrial Ca2+, Mg2+, and NAD+ homeostasis. Our results suggest mitochondrial NAD+> homeostasis as a therapeutic target for the prevention of heat-induced skeletal muscle injury.
    DOI:  https://doi.org/10.1139/apnm-2024-0157
  9. Methods Mol Biol. 2024 ;2816 77-85
      Skeletal muscle is one of the largest tissues in human body. Besides enabling voluntary movements and maintaining body's metabolic homeostasis, skeletal muscle is also a target of many pathological conditions. Mitochondria occupy 10-15% volume of a muscle myofiber and regulate many cellular processes, which often determine the fate of the cell. Isolation of mitochondria from skeletal muscle provides opportunities for various multi-omics studies with a focus on mitochondria in biomedical research field. Here we describe a protocol to efficiently isolate mitochondria with high quality and purity from skeletal muscle of mice using Nycodenz density gradient ultracentrifugation.
    Keywords:  Mitochondria isolation; Nycodenz density gradient ultracentrifugation; Skeletal muscle
    DOI:  https://doi.org/10.1007/978-1-0716-3902-3_8
  10. Sports Med Open. 2024 Jul 09. 10(1): 77
       BACKGROUND: Contracting skeletal muscle produces reactive oxygen species (ROS) originating from both mitochondrial and cytosolic sources. The use of non-specific antioxidants, such as vitamins C and E, during exercise has produced inconsistent results in terms of exercise performance. Consequently, the effects of the mitochondrial-targeted coenzyme Q10, named Mitoquinone (MitoQ) on exercise responses are currently under investigation.
    METHODS: In this study, we conducted a meta-analysis to quantitatively synthesize research assessing the impact of MitoQ on aerobic endurance performance and exercise-induced oxidative damage. PubMed, Web of Science, and SCOPUS databases were used to select articles from inception to January 16th of 2024. Inclusion criteria were MitoQ supplementation must be compared with a placebo group, showing acute exercise responses in both; for crossover designs, at least 14 d of washout was needed, and exercise training can be concomitant to MitoQ or placebo supplementation if the study meets the other inclusion criteria points. The risk of bias was evaluated through the Critical Appraisal Checklist (JBI).
    RESULTS: We identified eight studies encompassing a total sample size of 188 subjects. Our findings indicate that MitoQ supplementation effectively reduces exercise-induced oxidative damage (SMD: -1.33; 95% CI: -2.24 to -0.43). Furthermore, our findings indicate that acute and/or chronic MitoQ supplementation does not improve endurance exercise performance (SMD: -0.50; 95% CI: -1.39 to 0.40) despite reducing exercise-induced oxidative stress. Notably, our sensitivity analysis reveals that MitoQ may benefit subjects with peripheral artery disease (PAD) in improving exercise tolerance.
    CONCLUSION: While MitoQ effectively reduces exercise-induced oxidative damage, no evidence suggests that aerobic exercise performance is enhanced by either acute or chronic MitoQ supplementation. However, acute MitoQ supplementation may improve exercise tolerance in subjects with PAD. Future research should investigate whether MitoQ supplementation concurrent with exercise training (e.g., 4-16 weeks) alters adaptations induced by exercise alone and using different doses.
    Keywords:  Ergogenic; Mitochondria; Oxidative Stress; Training
    DOI:  https://doi.org/10.1186/s40798-024-00741-5
  11. Int J Mol Sci. 2024 Jul 04. pii: 7330. [Epub ahead of print]25(13):
      Ubiquitin C-terminal hydrolase L1 (UCHL1) is a deubiquitinating enzyme originally found in the brain. Our previous work revealed that UCHL1 was also expressed in skeletal muscle and affected myoblast differentiation and metabolism. In this study, we further tested the role of UCHL1 in myogenesis and muscle regeneration following muscle ischemia-reperfusion (IR) injury. In the C2C12 myoblast, UCHL1 knockdown upregulated MyoD and myogenin and promoted myotube formation. The skeletal muscle-specific knockout (smKO) of UCHL1 increased muscle fiber sizes in young mice (1 to 2 months old) but not in adult mice (3 months old). In IR-injured hindlimb muscle, UCHL1 was upregulated. UCHL1 smKO ameliorated tissue damage and injury-induced inflammation. UCHL1 smKO also upregulated myogenic factors and promoted functional recovery in IR injury muscle. Moreover, UCHL1 smKO increased Akt and Pink1/Parkin activities. The overall results suggest that skeletal muscle UCHL1 is a negative factor in skeletal muscle development and recovery following IR injury and therefore is a potential therapeutic target to improve muscle regeneration and functional recovery following injuries.
    Keywords:  UCHL1; inflammation; ischemia-reperfusion injury; myogenesis; skeletal muscle
    DOI:  https://doi.org/10.3390/ijms25137330
  12. Annu Rev Cell Dev Biol. 2024 Jul 08.
      Mitochondria serve as energetic and signaling hubs of the cell: This function results from the complex interplay between their structure, function, dynamics, interactions, and molecular organization. The ability to observe and quantify these properties often represents the puzzle piece critical for deciphering the mechanisms behind mitochondrial function and dysfunction. Fluorescence microscopy addresses this critical need and has become increasingly powerful with the advent of superresolution methods and context-sensitive fluorescent probes. In this review, we delve into advanced light microscopy methods and analyses for studying mitochondrial ultrastructure, dynamics, and physiology, and highlight notable discoveries they enabled.
    DOI:  https://doi.org/10.1146/annurev-cellbio-111822-114733
  13. EMBO Rep. 2024 Jul 09.
      Skeletal muscle regeneration involves a signaling network that regulates the proliferation, differentiation, and fusion of muscle precursor cells to injured myofibers. IRE1α, one of the arms of the unfolded protein response, regulates cellular proteostasis in response to ER stress. Here, we demonstrate that inducible deletion of IRE1α in satellite cells of mice impairs skeletal muscle regeneration through inhibiting myoblast fusion. Knockdown of IRE1α or its downstream target, X-box protein 1 (XBP1), also inhibits myoblast fusion during myogenesis. Transcriptome analysis revealed that knockdown of IRE1α or XBP1 dysregulates the gene expression of molecules involved in myoblast fusion. The IRE1α-XBP1 axis mediates the gene expression of multiple profusion molecules, including myomaker (Mymk). Spliced XBP1 (sXBP1) transcription factor binds to the promoter of Mymk gene during myogenesis. Overexpression of myomaker in IRE1α-knockdown cultures rescues fusion defects. Inducible deletion of IRE1α in satellite cells also inhibits myoblast fusion and myofiber hypertrophy in response to functional overload. Collectively, our study demonstrates that IRE1α promotes myoblast fusion through sXBP1-mediated up-regulation of the gene expression of multiple profusion molecules, including myomaker.
    Keywords:  IRE1; Muscle Regeneration; Myoblast Fusion; XBP1; and Myomaker
    DOI:  https://doi.org/10.1038/s44319-024-00197-4