bims-mitrat Biomed News
on Mitochondrial transplantation and transfer
Issue of 2024–05–26
twenty-one papers selected by
Gökhan Burçin Kubat, Gulhane Health Sciences Institute



  1. FASEB J. 2024 May 31. 38(10): e23655
      The disruption of mitochondria homeostasis can impair the contractile function of cardiomyocytes, leading to cardiac dysfunction and an increased risk of heart failure. This study introduces a pioneering therapeutic strategy employing mitochondria derived from human umbilical cord mesenchymal stem cells (hu-MSC) (MSC-Mito) for heart failure treatment. Initially, we isolated MSC-Mito, confirming their functionality. Subsequently, we monitored the process of single mitochondria transplantation into recipient cells and observed a time-dependent uptake of mitochondria in vivo. Evidence of human-specific mitochondrial DNA (mtDNA) in murine cardiomyocytes was observed after MSC-Mito transplantation. Employing a doxorubicin (DOX)-induced heart failure model, we demonstrated that MSC-Mito transplantation could safeguard cardiac function and avert cardiomyocyte apoptosis, indicating metabolic compatibility between hu-MSC-derived mitochondria and recipient mitochondria. Finally, through RNA sequencing and validation experiments, we discovered that MSC-Mito transplantation potentially exerted cardioprotection by reinstating ATP production and curtailing AMPKα-mTOR-mediated excessive autophagy.
    Keywords:  AMPKα‐mTOR; ATP; autophagy; cardiomyocyte apoptosis; mitochondria transplantation
    DOI:  https://doi.org/10.1096/fj.202400375R
  2. J Transl Med. 2024 May 24. 22(1): 491
      Intercellular mitochondrial transfer (MT) is a newly discovered form of cell-to-cell signalling involving the active incorporation of healthy mitochondria into stressed/injured recipient cells, contributing to the restoration of bioenergetic profile and cell viability, reduction of inflammatory processes and normalisation of calcium dynamics. Recent evidence has shown that MT can occur through multiple cellular structures and mechanisms: tunneling nanotubes (TNTs), via gap junctions (GJs), mediated by extracellular vesicles (EVs) and other mechanisms (cell fusion, mitochondrial extrusion and migrasome-mediated mitocytosis) and in different contexts, such as under physiological (tissue homeostasis and stemness maintenance) and pathological conditions (hypoxia, inflammation and cancer). As Mesenchimal Stromal/ Stem Cells (MSC)-mediated MT has emerged as a critical regulatory and restorative mechanism for cell and tissue regeneration and damage repair in recent years, its potential in stem cell therapy has received increasing attention. In particular, the potential therapeutic role of MSCs has been reported in several articles, suggesting that MSCs can enhance tissue repair after injury via MT and membrane vesicle release. For these reasons, in this review, we will discuss the different mechanisms of MSCs-mediated MT and therapeutic effects on different diseases such as neuronal, ischaemic, vascular and pulmonary diseases. Therefore, understanding the molecular and cellular mechanisms of MT and demonstrating its efficacy could be an important milestone that lays the foundation for future clinical trials.
    Keywords:  Extracellular vesicles; Horizontal mitochondrial transfer; Ischemic vascular diseases; Mesenchymal Stromal/Stem cells; Mitochondria; Neuronal diseases; Tunnelling nanotubes
    DOI:  https://doi.org/10.1186/s12967-024-05047-4
  3. J Exp Clin Cancer Res. 2024 May 21. 43(1): 147
      A century ago, the Warburg effect was first proposed, revealing that cancer cells predominantly rely on glycolysis during the process of tumorigenesis, even in the presence of abundant oxygen, shifting the main pathway of energy metabolism from the tricarboxylic acid cycle to aerobic glycolysis. Recent studies have unveiled the dynamic transfer of mitochondria within the tumor microenvironment, not only between tumor cells but also between tumor cells and stromal cells, immune cells, and others. In this review, we explore the pathways and mechanisms of mitochondrial transfer within the tumor microenvironment, as well as how these transfer activities promote tumor aggressiveness, chemotherapy resistance, and immune evasion. Further, we discuss the research progress and potential clinical significance targeting these phenomena. We also highlight the therapeutic potential of targeting intercellular mitochondrial transfer as a future anti-cancer strategy and enhancing cell-mediated immunotherapy.
    Keywords:  CAR-T; Chemotherapy resistance; Immune evasion; Metabolic symbiosis; Mitochondrial transfer; Oxidative phosphorylation; Tunneling nanotubes
    DOI:  https://doi.org/10.1186/s13046-024-03069-w
  4. Mitochondrion. 2024 May 18. pii: S1567-7249(24)00060-6. [Epub ahead of print] 101902
      Traumatic brain injury (TBI) is a global public-health problem. Astrocytes, and their mitochondria, are important factors in the pathogenesis of TBI-induced secondary injury. Mitochondria extracted from healthy tissues and then transplanted have shown promise in models of a variety of diseases. However, the effect on recipient astrocytes is unclear. Here, we isolated primary astrocytes from newborn C57BL/6 mice, one portion of which was used to isolate mitochondria, and another was subjected to stretch injury (SI) followed by transplantation of the isolated mitochondria. After incubation for 12 h, cell viability, mitochondrial dysfunction, calcium overload, redox stress, inflammatory response, and apoptosis were improved. Live-cell imaging showed that the transplanted mitochondria were incorporated into injured astrocytes and fused with their mitochondrial networks, which was in accordance with the changes in the expression levels of markers of mitochondrial dynamics. The astrocytic IKK/NF-κB pathway was decelerated whereas the AMPK/PGC-1α pathway was accelerated by transplantation. Together, these results indicate that exogenous mitochondria from untreated astrocytes can be incorporated into injured astrocytes and fuse with their mitochondrial networks, improving cell viability by ameliorating mitochondrial dysfunction, redox stress, calcium overload, and inflammation.
    Keywords:  Astrocytes; Mitochondria dynamics; Mitochondria transplantation; Stretch injury; Traumatic brain injury
    DOI:  https://doi.org/10.1016/j.mito.2024.101902
  5. Mol Ther Methods Clin Dev. 2024 Jun 13. 32(2): 101259
      Extracellular vesicles (EVs) have the innate ability to carry proteins, lipids, and nucleic acids between cells, and thus these vesicles have gained much attention as potential therapeutic delivery vehicles. Many strategies have been explored to enhance the loading of specific cargoes of interest into EVs, which could result in the delivery of more therapeutic to recipient cells, thus enhancing therapeutic efficacy. In this review, we discuss the natural biogenesis of EVs, the mechanism by which proteins and nucleic acids are selected for inclusion in EVs, and novel methods that have been employed to enhance loading of specific cargoes into EVs. As well, we discuss biodistribution of administered EVs in vivo and summarize clinical trials that have attempted to harness the therapeutic potential of EVs.
    Keywords:  biodistribution; bioengineering; exosomes; extracellular vesicles; therapeutic delivery
    DOI:  https://doi.org/10.1016/j.omtm.2024.101259
  6. Cells. 2024 May 17. pii: 861. [Epub ahead of print]13(10):
      As the economic burden associated with vision loss and ocular damage continues to rise, there is a need to explore novel treatment strategies. Extracellular vesicles (EVs) are enriched with various biological cargo, and there is abundant literature supporting the reparative and immunomodulatory properties of stem cell EVs across a broad range of pathologies. However, one area that requires further attention is the reparative effects of stem cell EVs in the context of ocular damage. Additionally, most of the literature focuses on EVs isolated from primary stem cells; the use of EVs isolated from human telomerase reverse transcriptase (hTERT)-immortalized stem cells has not been thoroughly examined. Using our large-scale EV-manufacturing platform, we reproducibly manufactured EVs from hTERT-immortalized mesenchymal stem cells (MSCs) and employed various methods to characterize and profile their associated cargo. We also utilized well-established cell-based assays to compare the effects of these EVs on both healthy and damaged retinal pigment epithelial cells. To the best of our knowledge, this is the first study to establish proof of concept for reproducible, large-scale manufacturing of hTERT-immortalized MSC EVs and to investigate their potential reparative properties against damaged retinal cells. The results from our studies confirm that hTERT-immortalized MSC EVs exert reparative effects in vitro that are similar to those observed in primary MSC EVs. Therefore, hTERT-immortalized MSCs may represent a more consistent and reproducible platform than primary MSCs for generating EVs with therapeutic potential.
    Keywords:  extracellular vesicles (EVs); hTERT-immortalized mesenchymal stem cells; ionizing radiation (IR); retinal pigment epithelium (RPE) cells
    DOI:  https://doi.org/10.3390/cells13100861
  7. Hum Mol Genet. 2024 May 22. 33(R1): R80-R91
      Mitochondria are pleiotropic organelles central to an array of cellular pathways including metabolism, signal transduction, and programmed cell death. Mitochondria are also key drivers of mammalian immune responses, functioning as scaffolds for innate immune signaling, governing metabolic switches required for immune cell activation, and releasing agonists that promote inflammation. Mitochondrial DNA (mtDNA) is a potent immunostimulatory agonist, triggering pro-inflammatory and type I interferon responses in a host of mammalian cell types. Here we review recent advances in how mtDNA is detected by nucleic acid sensors of the innate immune system upon release into the cytoplasm and extracellular space. We also discuss how the interplay between mtDNA release and sensing impacts cellular innate immune endpoints relevant to health and disease.
    Keywords:  NLRP3; TLR9; cGAS-STING; inflammation; innate immunity; mitochondria; mitochondrial DNA
    DOI:  https://doi.org/10.1093/hmg/ddae031
  8. CNS Neurosci Ther. 2024 May;30(5): e14752
      Exosomes possess a significant role in intercellular communications. In the nervous system, various neural cells release exosomes that not only own a role in intercellular communications but also eliminate the waste of cells, maintain the myelin sheath, facilitate neurogenesis, and specifically assist in normal cognitive function. In neurological conditions including Parkinson's disease (PD), Alzheimer's disease (AD), traumatic brain injury (TBI), and stroke, exosomal cargo like miRNAs take part in the sequela of conditions and serve as a diagnostic tool of neurological disorders, too. Exosomes are not only a diagnostic tool but also their inhibition or administration from various sources like mesenchymal stem cells and serum, which have shown a worthy potential to treat multiple neurological disorders. In addition to neurodegenerative manifestations, cognitive deficiencies are an integral part of neurological diseases, and applying exosomes in improving both aspects of these diseases has been promising. This review discusses the status of exosome therapy in improving neurorestorative and cognitive function following neurological disease.
    Keywords:  cognition; exosome therapy; neurological disorders; neuroregeneration; neurorestoration
    DOI:  https://doi.org/10.1111/cns.14752
  9. bioRxiv. 2024 May 12. pii: 2024.05.12.593148. [Epub ahead of print]
      Small extracellular vesicles (sEVs) are heterogenous lipid membrane particles typically less than 200 nm in size and secreted by most cell types either constitutively or upon activation signals. sEVs isolated from biofluids contain RNAs, including small non-coding RNAs (ncRNAs), that can be either encapsulated within the EV lumen or bound to the EV surface. EV-associated microRNAs (miRNAs) are, despite a relatively low abundance, extensively investigated for their selective incorporation and their role in cell-cell communication. In contrast, the sorting of highly-structured ncRNA species is understudied, mainly due to technical limitations of traditional small RNA sequencing protocols. Here, we adapted ALL-tRNAseq to profile the relative abundance of highly structured and potentially methylated small ncRNA species, including transfer RNAs (tRNAs), small nucleolar RNAs (snoRNAs), and Y RNAs in bulk EV preparations. We determined that full-length tRNAs, typically 75 to 90 nucleotides in length, were the dominant small ncRNA species (>60% of all reads in the 18-120 nucleotides size-range) in all cell culture-derived EVs, as well as in human plasma-derived EV samples, vastly outnumbering 21 nucleotides-long miRNAs. Nearly all EV-associated tRNAs were protected from external RNAse treatment, indicating a location within the EV lumen. Strikingly, the vast majority of luminal-sorted, full-length, nucleobase modification-containing EV-tRNA sequences, harbored a dysfunctional 3' CCA tail, 1 to 3 nucleotides truncated, rendering them incompetent for amino acid loading. In contrast, in non-EV associated extracellular particle fractions (NVEPs), tRNAs appeared almost exclusively fragmented or 'nicked' into tRNA-derived small RNAs (tsRNAs) with lengths between 18 to 35 nucleotides. We propose that in mammalian cells, tRNAs that lack a functional 3' CCA tail are selectively sorted into EVs and shuttled out of the producing cell, offering a new perspective into the physiological role of secreted EVs and luminal cargo-selection.
    DOI:  https://doi.org/10.1101/2024.05.12.593148
  10. Mitochondrion. 2024 May 20. pii: S1567-7249(24)00065-5. [Epub ahead of print]77 101907
      Mitochondrial mutations have been linked to changes in phenotypes such as fertility or longevity, however, these changes have been often inconsistent across populations for unknown reasons. A hypothesis that could explain this inconsistency is that some still uncharacterized mitochondrial products are mediating the phenotypic changes across populations. It has been hypothesized that one such product could be the small RNAs encoded in the mitochondrial genome, thus this work will provide new evidence for their existence and function. By using data from the 1000 genome project and knowledge from previously characterized nuclear small RNAs, this study found that 10 small RNAs encoded in tRNA fragments are consistently expressed in 450 individuals from five different populations. Furthermore, this study demonstrated that the expression of some small mitochondrial RNAs is different in individuals of African ancestry, similar to what was observed before in nuclear and mitochondria mRNAs. Lastly, we investigate the causes behind these differences in expression, showing that at least one of the mt-tRFs might be regulated by TRMT10B. The analyses presented in this work further support the small mitochondrial RNAs as functional molecules, and their population-specific expression supports the hypothesis that they act as a mediator between the nucleus and mitochondria differently across populations.
    Keywords:  Mitochondria; Mitonuclear communication; RNA interference; Small RNAs; tRNA fragment
    DOI:  https://doi.org/10.1016/j.mito.2024.101907
  11. Cell. 2024 May 23. pii: S0092-8674(24)00463-X. [Epub ahead of print]187(11): 2601-2627
      Mitochondria reside at the crossroads of catabolic and anabolic metabolism-the essence of life. How their structure and function are dynamically tuned in response to tissue-specific needs for energy, growth repair, and renewal is being increasingly understood. Mitochondria respond to intrinsic and extrinsic stresses and can alter cell and organismal function by inducing metabolic signaling within cells and to distal cells and tissues. Here, we review how the centrality of mitochondrial functions manifests in health and a broad spectrum of diseases and aging.
    DOI:  https://doi.org/10.1016/j.cell.2024.04.037
  12. Hum Mol Genet. 2024 May 22. 33(R1): R34-R41
      In human cells, the nuclear and mitochondrial genomes engage in a complex interplay to produce dual-encoded oxidative phosphorylation (OXPHOS) complexes. The coordination of these dynamic gene expression processes is essential for producing matched amounts of OXPHOS protein subunits. This review focuses on our current understanding of the mitochondrial central dogma rates, highlighting the striking differences in gene expression rates between mitochondrial and nuclear genes. We synthesize a coherent model of mitochondrial gene expression kinetics, highlighting the emerging principles and emphasizing where more precise measurements would be beneficial. Such an understanding is pivotal for grasping the unique aspects of mitochondrial function and its role in cellular energetics, and it has profound implications for aging, metabolic disorders, and neurodegenerative diseases.
    Keywords:  gene regulation; mitochondrial DNA; mitonuclear balance; oxidative phosphorylation
    DOI:  https://doi.org/10.1093/hmg/ddae036
  13. Discov Oncol. 2024 May 23. 15(1): 181
      Breast cancer (BC) continues to be a significant global challenge due to drug resistance and severe side effects. The increasing prevalence is alarming, requiring new therapeutic approaches to address these challenges. At this point, Extracellular vesicles (EVs), specifically small endosome-released nanometer-sized EVs (SEVs) or exosomes, have been explored by literature as potential theranostics. Therefore, this review aims to highlight the therapeutic potential of exosomes in BC, focusing on their advantages in drug delivery and their ability to mitigate metastasis. Following the review, we identified exosomes' potential in combination therapies, serving as miRNA carriers and contributing to improved anti-tumor effects. This is evident in clinical trials investigating exosomes in BC, which have shown their ability to boost chemotherapy efficacy by delivering drugs like paclitaxel (PTX) and doxorubicin (DOX). However, the translation of EVs into BC therapy is hindered by various challenges. These challenges include the heterogeneity of EVs, the selection of the appropriate parent cell, the loading procedures, and determining the optimal administration routes. Despite the promising therapeutic potential of EVs, these obstacles must be addressed to realize their benefits in BC treatment.
    Keywords:  Breast cancer; Extracellular vesicles; Theranostics
    DOI:  https://doi.org/10.1007/s12672-024-01007-y
  14. FASEB J. 2024 May 31. 38(10): e23672
      Cardiovascular disease (CVD) is a leading global cause of mortality, difficult to predict in advance. Evidence indicates that the copy number of mitochondrial DNA (mtDNAcn) in blood is altered in individuals with CVD. MtDNA released into circulation may act as a mediator of inflammation, a recognized factor in the development of CVD, in the long distance. This pilot study aims to test if levels of mtDNAcn in buffy coat DNA (BC-mtDNA), in circulating cellfree DNA (cf-mtDNA), or in DNA extracted from plasma extracellular vesicles (EV-mtDNA) are altered in CVD patients and if they can predict heart attack in advance. A group of 144 people with different CVD statuses (50 that had CVD, 94 healthy) was selected from the LifeLines Biobank according to the incidence of new cardiovascular event monitored in 6 years (50 among controls had heart attack after the basal assessment). MtDNAcn was quantified in total cf-DNA and EV-DNA from plasma as well as in buffy coat. EVs have been characterized by their size, polydispersity index, count rate, and zeta potential, by Dynamic Light Scattering. BC-mtDNAcn and cf-mtDNAcn were not different between CVD patients and healthy subjects. EVs carried higher mtDNAcn in subject with a previous history of CVD than controls, also adjusting the analysis for the EVs derived count rate. Despite mtDNAcn was not able to predict CVD in advance, the detection of increased EV-mtDNAcn in CVD patients in this pilot study suggests the need for further investigations to determine its pathophysiological role in inflammation.
    Keywords:  CVD; cell‐free DNA; extracellular vesicles; heart attack; mitochondrial DNA
    DOI:  https://doi.org/10.1096/fj.202400463R
  15. Pharmaceutics. 2024 Apr 26. pii: 593. [Epub ahead of print]16(5):
       BACKGROUND: Small extracellular vesicles (sEVs) obtained from human umbilical cord mesenchymal stromal cells (MSCs) have shown cardioprotective efficacy in doxorubicin-induced cardiotoxicity (DIC). However, their clinical application is limited due to the low yield and high consumption. This study aims to achieve large-scale production of sEVs using a three-dimensional (3D) bioreactor system. In addition, sEVs were developed to deliver Ginsenoside Rg1 (Rg1), a compound derived from traditional Chinese medicine, Ginseng, that has cardioprotective properties but limited bioavailability, to enhance the treatment of DIC.
    METHODS: The 3D bioreactor system with spinner flasks was used to expand human umbilical cord MSCs and collect MSC-conditioned medium. Subsequently, sEVs were isolated from the conditioned medium using differential ultra-centrifugation (dUC). The sEVs were loaded with Ginsenoside Rg1 by electroporation and evaluated for cardioprotective efficacy using Cell Counting Kit-8 (CCK-8) analysis, Annexin V/PI staining and live cell count of H9c2 cells under DIC.
    RESULTS: Using the 3D bioreactor system with spinner flasks, the expansion of MSCs reached ~600 million, and the production of sEVs was up to 2.2 × 1012 particles in five days with significantly reduced bench work compared to traditional 2D flasks. With the optimized protocol, the Ginsenoside Rg1 loading efficiency of sEVs by electroporation was ~21%, higher than sonication or co-incubation. Moreover, Rg1-loaded sEVs had attenuated DOX-induced cardiotoxicity with reduced apoptosis compared to free Ginsenoside Rg1 or sEVs.
    CONCLUSIONS: The 3D culture system scaled up the production of sEVs, which facilitated the Rg1 delivery and attenuated cardiomyocyte apoptosis, suggesting a potential treatment of DOX-induced cardiotoxicity.
    Keywords:  3D cell culture; Ginsenoside Rg1; cardioprotective efficacy; drug delivery; mesenchymal stromal cells; small extracellular vesicles
    DOI:  https://doi.org/10.3390/pharmaceutics16050593
  16. Ren Fail. 2024 Dec;46(1): 2352629
      Diabetic kidney disease (DKD) is a serious complication of diabetes mellitus (DM) and has become the main cause of end-stage renal disease worldwide. In recent years, with the increasing incidence of DM, the pathogenesis of DKD has received increasing attention. The pathogenesis of DKD is diverse and complex. Extracellular vesicles (EVs) contain cell-derived membrane proteins, nucleic acids (such as DNA and RNA) and other important cellular components and are involved in intercellular information and substance transmission. In recent years, an increasing number of studies have confirmed that EVs play an important role in the development of DKD. The purpose of this paper is to explain the potential diagnostic value of EVs in DKD, analyze the mechanism by which EVs participate in intercellular communication, and explore whether EVs may become drug carriers for targeted therapy to provide a reference for promoting the implementation and application of exosome therapy strategies in clinical practice.
    Keywords:  Extracellular vesicles; diabetic kidney disease; inflammatory reaction; intercellular communication; oxidative stress; renal fibrosis
    DOI:  https://doi.org/10.1080/0886022X.2024.2352629
  17. Theranostics. 2024 ;14(7): 2777-2793
      Small extracellular vesicles (sEVs) are naturally occurring vesicles that have the potential to be manipulated to become promising drug delivery vehicles for on-demand in vitro and in vivo gene editing. Here, we developed the modular safeEXO platform, a prototype sEV delivery vehicle that is mostly devoid of endogenous RNA and can efficaciously deliver RNA and ribonucleoprotein (RNP) complexes to their intended intracellular targets manifested by downstream biologic activity. We also successfully engineered producer cells to produce safeEXO vehicles that contain endogenous Cas9 (safeEXO-CAS) to effectively deliver efficient ribonucleoprotein (RNP)-mediated CRISPR genome editing machinery to organs or diseased cells in vitro and in vivo. We confirmed that safeEXO-CAS sEVs could co-deliver ssDNA, sgRNA and siRNA, and efficaciously mediate gene insertion in a dose-dependent manner. We demonstrated the potential to target safeEXO-CAS sEVs by engineering sEVs to express a tissue-specific moiety, integrin alpha-6 (safeEXO-CAS-ITGA6), which increased their uptake to lung epithelial cells in vitro and in vivo. We tested the ability of safeEXO-CAS-ITGA6 loaded with EMX1 sgRNAs to induce lung-targeted editing in mice, which demonstrated significant gene editing in the lungs with no signs of morbidity or detectable changes in immune cell populations. Our results demonstrate that our modular safeEXO platform represents a targetable, safe, and efficacious vehicle to deliver nucleic acid-based therapeutics that successfully reach their intracellular targets. Furthermore, safeEXO producer cells can be genetically manipulated to produce safeEXO vehicles containing CRISPR machinery for more efficient RNP-mediated genome editing. This platform has the potential to improve current therapies and increase the landscape of treatment for various human diseases using RNAi and CRISPR approaches.
    Keywords:  CRISPR; Cas; Delivery; Genome Editing; sEVs
    DOI:  https://doi.org/10.7150/thno.92133
  18. Biomolecules. 2024 May 13. pii: 575. [Epub ahead of print]14(5):
      Chimerism-based strategies represent a pioneering concept which has led to groundbreaking advancements in regenerative medicine and transplantation. This new approach offers therapeutic potential for the treatment of various diseases, including inherited disorders. The ongoing studies on chimeric cells prompted the development of Dystrophin-Expressing Chimeric (DEC) cells which were introduced as a potential therapy for Duchenne Muscular Dystrophy (DMD). DMD is a genetic condition that leads to premature death in adolescent boys and remains incurable with current methods. DEC therapy, created via the fusion of human myoblasts derived from normal and DMD-affected donors, has proven to be safe and efficacious when tested in experimental models of DMD after systemic-intraosseous administration. These studies confirmed increased dystrophin expression, which correlated with functional and morphological improvements in DMD-affected muscles, including cardiac, respiratory, and skeletal muscles. Furthermore, the application of DEC therapy in a clinical study confirmed its long-term safety and efficacy in DMD patients. This review summarizes the development of chimeric cell technology tested in preclinical models and clinical studies, highlighting the potential of DEC therapy in muscle regeneration and repair, and introduces chimeric cell-based therapies as a promising, novel approach for muscle regeneration and the treatment of DMD and other neuromuscular disorders.
    Keywords:  DEC therapy; Duchenne Muscular Dystrophy; Dystrophin Expressing Chimeric (DEC) cells; cellular therapy; chimeric cells; chimerism; donor-recipient chimeric cells; muscle regeneration; stem cells
    DOI:  https://doi.org/10.3390/biom14050575
  19. Int J Nanomedicine. 2024 ;19 4357-4375
      Wound healing is a sophisticated and orderly process of cellular interactions in which the body restores tissue architecture and functionality following injury. Healing of chronic diabetic wounds is difficult due to impaired blood circulation, a reduced immune response, and disrupted cellular repair mechanisms, which are often associated with diabetes. Stem cell-derived extracellular vesicles (SC-EVs) hold the regenerative potential, encapsulating a diverse cargo of proteins, RNAs, and cytokines, presenting a safe, bioactivity, and less ethical issues than other treatments. SC-EVs orchestrate multiple regenerative processes by modulating cellular communication, increasing angiogenesis, and promoting the recruitment and differentiation of progenitor cells, thereby potentiating the reparative milieu for diabetic wound healing. Therefore, this review investigated the effects and mechanisms of EVs from various stem cells in diabetic wound healing, as well as their limitations and challenges. Continued exploration of SC-EVs has the potential to revolutionize diabetic wound care.
    Keywords:  EVs; diabetes; ncRNAs; regeneration; stem cells; wound healing
    DOI:  https://doi.org/10.2147/IJN.S461342
  20. Front Immunol. 2024 ;15 1369356
      Non-small cell lung carcinoma (NSCLC) accounts for 85% of lung cancers, the leading cause of cancer associated deaths in the US and worldwide. Within NSCLC tumors, there is a subpopulation of cancer cells termed cancer stem cells (CSCs) which exhibit stem-like properties that drive NSCLC progression, metastasis, relapse, and therapeutic resistance. Extracellular vesicles (EVs) are membrane-bound nanoparticles secreted by cells that carry vital messages for short- and long-range intercellular communication. Numerous studies have implicated NSCLC CSC-derived EVs in the factors associated with NSCLC lethality. In this review, we have discussed mechanisms of EV-directed cross-talk between CSCs and cells of the tumor microenvironment that promote stemness, tumor progression and metastasis in NSCLC. The mechanistic studies discussed herein have provided insights for developing novel NSCLC diagnostic and prognostic biomarkers and strategies to therapeutically target the NSCLC CSC niche.
    Keywords:  biomarkers; cancer stem cells; extracellular vesicles; metastasis; non-small cell lung cancer; oncogenic signaling; therapeutic targeting; tumor microenvironment
    DOI:  https://doi.org/10.3389/fimmu.2024.1369356
  21. Hum Mol Genet. 2024 May 22. 33(R1): R42-R46
      Mitochondrial translation is a complex process responsible for the synthesis of essential proteins involved in oxidative phosphorylation, a fundamental pathway for cellular energy production. Central to this process is the termination phase, where dedicated factors play a pivotal role in ensuring accurate and timely protein production. This review provides a comprehensive overview of the current understanding of translation termination in human mitochondria, emphasizing structural features and molecular functions of two mitochondrial termination factors mtRF1 and mtRF1a.
    Keywords:  Mitochondrial translation; mitochondrial translation termination factors; mitoribosomes
    DOI:  https://doi.org/10.1093/hmg/ddae032