bims-mitran Biomed News
on Mitochondrial translation
Issue of 2025–06–08
two papers selected by
Andreas Kohler, Umeå University



  1. J Biol Chem. 2025 Jun 03. pii: S0021-9258(25)02184-2. [Epub ahead of print] 110334
      Mitochondrial tRNA processing defects have been associated with some clinical presentations including deafness. Especially, a deafness-linked m.7516delA mutation impaired the 5' end processing of RNA precursors and mitochondrial translation. In this study, we investigated the mechanism by m.7516delA mutation induced-deficiencies mitigate organellular and cellular integrity. The m.7516delA mutation downregulated the expression of nucleus encoding subunits and upregulated assemble factors of complex IV and altered the assembly and activities of oxidative phosphorylation (OXPHOS) complexes. The impairment of OXPHOS alleviated mitochondrial quality control processes, including the imbalanced mitochondrial dynamics via increasing fission with abnormal mitochondrial morphology. The m.7516delA mutation upregulated both ubiquitin-dependent and independent mitophagy pathways, evidenced by increasing levels of Parkin, BNIP3, NIX and MFN2-ubiquitination and altering interaction between MFN2 and MUL1 or Parkin, to facilitate the degradation of severely damaged mitochondria. Strikingly, the m.7516delA mutation activated integrated stress response (ISR) pathway, evidenced by upregulation of GCN2, P-GCN2, p-eIF2α, CHOP, ATF4 and elevating the nucleus-location of ATF5 to minimizes the damages in defective mitochondria. Both activation of ISR and PINK1/Parkin mitophagy pathways ameliorate the cell homeostasis via elevating the autophagy process and upregulating apoptotic pathways. Our findings provide new insights into underlying aberrant RNA processing-induced dysfunctions reprogrammed organelles and cellular integrity.
    DOI:  https://doi.org/10.1016/j.jbc.2025.110334
  2. bioRxiv. 2025 May 27. pii: 2025.05.13.653903. [Epub ahead of print]
      Human mitochondrial genome encodes essential genes for the oxidative phosphorylation (OXPHOS) complexes. These genes must be transcribed and translated in coordination with nuclear-encoded OXPHOS components to ensure correct stoichiometry during OXPHOS complex assembly in the mitochondria. While much is known about nuclear gene regulation during metabolic stresses like glucose deprivation, little is known about the accompanying transcriptional response in mitochondria. Using microscopy, roadblocking qPCR, and transcriptomics, we studied mitochondrial transcription in cells subjected to glucose deprivation, which is known to cause nuclear transcription downregulation and to activate the integrated stress response (ISR). We found that glucose deprivation stabilizes mitochondrial RNAs and slows mitochondrial transcription, effects that are quickly reversed with glucose reintroduction. Although transcriptomics revealed strong upregulation of the ISR, mitochondrial RNA stabilization was not upregulated by pharmacological activation of the ISR, but was promoted by inhibition of glycolysis, unveiling a direct connection between metabolism and regulation of mitochondrial gene expression.
    DOI:  https://doi.org/10.1101/2025.05.13.653903