bims-mitran Biomed News
on Mitochondrial Translation
Issue of 2024‒09‒08
four papers selected by
Andreas Kohler, Umeå University



  1. Life Sci Alliance. 2024 Nov;pii: e202402764. [Epub ahead of print]7(11):
      Mitochondrial gene expression is a compartmentalised process essential for metabolic function. The replication and transcription of mitochondrial DNA (mtDNA) take place at nucleoids, whereas the subsequent processing and maturation of mitochondrial RNA (mtRNA) and mitoribosome assembly are localised to mitochondrial RNA granules. The bidirectional transcription of circular mtDNA can lead to the hybridisation of polycistronic transcripts and the formation of immunogenic mitochondrial double-stranded RNA (mt-dsRNA). However, the mechanisms that regulate mt-dsRNA localisation and homeostasis are largely unknown. With super-resolution microscopy, we show that mt-dsRNA overlaps with the RNA core and associated proteins of mitochondrial RNA granules but not nucleoids. Mt-dsRNA foci accumulate upon the stimulation of cell proliferation and their abundance depends on mitochondrial ribonucleotide supply by the nucleoside diphosphate kinase, NME6. Consequently, mt-dsRNA foci are profuse in cultured cancer cells and malignant cells of human tumour biopsies. Our results establish a new link between cell proliferation and mitochondrial nucleic acid homeostasis.
    DOI:  https://doi.org/10.26508/lsa.202402764
  2. ACS Biomater Sci Eng. 2024 Sep 04.
      Mitochondria are essential for cellular functions, such as energy production. Human mitochondrial DNA (mtDNA), encoding 13 distinct genes, two rRNA, and 22 tRNA, is crucial for maintaining vital functions, along with nuclear-encoded mitochondrial proteins. However, mtDNA is prone to somatic mutations due to replication errors and reactive oxygen species exposure. These mutations can accumulate, leading to heteroplasmic conditions associated with severe metabolic diseases. Therefore, developing methodologies to improve mitochondrial health is highly demanded. Introducing nucleic acids directly into mitochondria is a promising strategy to control mitochondrial gene expression. Messenger RNA (mRNA) delivery especially offers several advantages such as faster gene expression and reduced risk of genome integration if accidentally delivered to the cell nucleus. In this study, we investigated the effect of the poly(A) tail length of mRNA on the mitochondrial translation to achieve efficient expression. We used a peptide-based mitochondrial targeting system, mitoNEET-(RH)9, comprising a mitochondria-targeting sequence (MTS) and a cationic sequence, to deliver mRNA with various poly(A) tails into the mitochondria. The poly(A) tail length significantly affected translational efficiency, with a medium length of 60 nucleotides maximizing protein expression in various cell lines due to enhanced interaction with mitochondrial RNA-binding proteins. Our findings highlight the importance of optimizing poly(A) tail length for efficient mitochondrial mRNA translation, providing a potential strategy for improving mitochondrial gene therapy. These results pave the way for further exploration of the mechanisms and clinical applications of mitochondrial mRNA delivery systems.
    Keywords:  mRNA; mitochondria; mitochondria-targeting peptide; polyplexes
    DOI:  https://doi.org/10.1021/acsbiomaterials.4c01169
  3. Aging Cell. 2024 Aug 29. e14282
      Somatic mitochondrial DNA (mtDNA) mutation accumulation has been observed in individuals with retinal degenerative disorders. To study the effects of aging and mtDNA mutation accumulation in the retina, a polymerase gamma (POLG) exonuclease-deficient model, the PolgD257A mutator mice (D257A), was used. POLG is an enzyme responsible for regulating mtDNA replication and repair. Retinas of young and older mice with this mutation were analyzed in vivo and ex vivo to provide new insights into the contribution of age-related mitochondrial (mt) dysfunction due to mtDNA damage. Optical coherence tomography (OCT) image analysis revealed a decrease in retinal and photoreceptor thickness starting at 6 months of age in mice with the D257A mutation compared to wild-type (WT) mice. Electroretinography (ERG) testing showed a significant decrease in all recorded responses at 6 months of age. Sections labeled with markers of different types of retinal cells, including cones, rods, and bipolar cells, exhibited decreased labeling starting at 6 months. However, electron microscopy analysis revealed differences in retinal pigment epithelium (RPE) mt morphology beginning at 3 months. Interestingly, there was no increase in oxidative stress and parkin-mediated mitophagy in the ages analyzed in the retina or RPE of D257A mice. Additionally, D257A RPE exhibited an accelerated rate of autofluorescence cytoplasmic granule formation and accumulation. Mt markers displayed different abundance in protein lysates obtained from retina and RPE samples. These findings suggest that the accumulation of mtDNA mutations leads to impaired mt function and accelerated aging, resulting in retinal degeneration.
    Keywords:  D257A; mitochondria; mitochondrial DNA (mtDNA); polymerase gamma (POLG); retina; retinal degeneration
    DOI:  https://doi.org/10.1111/acel.14282