bims-mitran Biomed News
on Mitochondrial Translation
Issue of 2024‒03‒24
three papers selected by
Andreas Kohler, Umeå University



  1. Mol Cell. 2024 Mar 14. pii: S1097-2765(24)00170-9. [Epub ahead of print]
      Oxidative phosphorylation (OXPHOS) complexes, encoded by both mitochondrial and nuclear DNA, are essential producers of cellular ATP, but how nuclear and mitochondrial gene expression steps are coordinated to achieve balanced OXPHOS subunit biogenesis remains unresolved. Here, we present a parallel quantitative analysis of the human nuclear and mitochondrial messenger RNA (mt-mRNA) life cycles, including transcript production, processing, ribosome association, and degradation. The kinetic rates of nearly every stage of gene expression differed starkly across compartments. Compared with nuclear mRNAs, mt-mRNAs were produced 1,100-fold more, degraded 7-fold faster, and accumulated to 160-fold higher levels. Quantitative modeling and depletion of mitochondrial factors LRPPRC and FASTKD5 identified critical points of mitochondrial regulatory control, revealing that the mitonuclear expression disparities intrinsically arise from the highly polycistronic nature of human mitochondrial pre-mRNA. We propose that resolving these differences requires a 100-fold slower mitochondrial translation rate, illuminating the mitoribosome as a nexus of mitonuclear co-regulation.
    Keywords:  LRPPRC; Leighs disease; RNA life cycle; gene regulation; genetic conflict; metabolic regulation; mitochondrial gene expression; mitochondrial translation; mitonuclear balance; organellular biogenesis; oxidative phosphorylation
    DOI:  https://doi.org/10.1016/j.molcel.2024.02.028
  2. J Biol Chem. 2024 Mar 16. pii: S0021-9258(24)01671-5. [Epub ahead of print] 107176
      Mitochondrial translation depends on mRNA-specific activators. In Schizosaccharomyces pombe, DEAD-box protein Mrh5, pentatricopeptide repeat (PPR) protein Ppr4, Mtf2, and Sls1 form a stable complex (designated Mrh5C) required for translation of mitochondrial DNA (mtDNA)-encoded cox1 mRNA, the largest subunit of the cytochrome c oxidase complex. However, how Mrh5C is formed and what role Mrh5C plays in cox1 mRNA translation have not been reported. To address these questions, we investigated the role of individual Mrh5C subunits in the assembly and function of Mrh5C. Our results revealed that Mtf2 and Sls1 form a subcomplex that serves as a scaffold to bring Mrh5 and Ppr4 together. Mrh5C binds to the small subunit of the mitoribosome (mtSSU), but each subunit could not bind to the mtSSU independently. Importantly, Mrh5C is required for the association of cox1 mRNA with the mtSSU. Finally, we investigated the importance of the signature DEAD-box in Mrh5. We found that the DEAD-box of Mrh5 is required for the association of Mrh5C and cox1 mRNA with the mtSSU. Unexpectedly, this motif is also required for the interaction of Mrh5 with other Mrh5C subunits. Altogether, our results suggest that Mrh5 and Ppr4 cooperate in activating the translation of cox1 mRNA. Our results also suggest that Mrh5C activates the translation of cox1 mRNA by promoting the recruitment of cox1 mRNA to the mtSSU.
    Keywords:  PPR protein; Schizosaccharomyces pombe; cox1 mRNA; mitochondrial translation; oxidative phosphorylation
    DOI:  https://doi.org/10.1016/j.jbc.2024.107176
  3. Adv Sci (Weinh). 2024 Mar 18. e2307480
      Due to the exclusive maternal transmission, oocyte mitochondrial dysfunction reduces fertility rates, affects embryonic development, and programs offspring to metabolic diseases. However, mitochondrial DNA (mtDNA) are vulnerable to mutations during oocyte maturation, leading to mitochondrial nucleotide variations (mtSNVs) within a single oocyte, referring to mtDNA heteroplasmy. Obesity (OB) accounts for more than 40% of women at the reproductive age in the USA, but little is known about impacts of OB on mtSNVs in mature oocytes. It is found that OB reduces mtDNA content and increases mtSNVs in mature oocytes, which impairs mitochondrial energetic functions and oocyte quality. In mature oocytes, OB suppresses AMPK activity, aligned with an increased binding affinity of the ATF5-POLG protein complex to mutated mtDNA D-loop and protein-coding regions. Similarly, AMPK knockout increases the binding affinity of ATF5-POLG proteins to mutated mtDNA, leading to the replication of heteroplasmic mtDNA and impairing oocyte quality. Consistently, AMPK activation blocks the detrimental impacts of OB by preventing ATF5-POLG protein recruitment, improving oocyte maturation and mitochondrial energetics. Overall, the data uncover key features of AMPK activation in suppressing mtSNVs, and improving mitochondrial biogenesis and oocyte maturation in obese females.
    Keywords:  AMPK; female obesity; mature oocyte; mtDNA heteroplasmy
    DOI:  https://doi.org/10.1002/advs.202307480