bims-mitran Biomed News
on Mitochondrial Translation
Issue of 2024‒02‒04
five papers selected by
Andreas Kohler, Umeå University



  1. Hum Mol Genet. 2024 Jan 27. pii: ddae012. [Epub ahead of print]
      Human mitochondrial DNA is one of the most simplified cellular genomes and facilitates compartmentalized gene expression. Within the organelle, there is no physical barrier to separate transcription and translation, nor is there evidence that quality control surveillance pathways are active to prevent translation on faulty mRNA transcripts. Mitochondrial ribosomes synthesize 13 hydrophobic proteins that require co-translational insertion into the inner membrane of the organelle. To maintain the integrity of the inner membrane, which is essential for organelle function, requires responsive quality control mechanisms to recognize aberrations in protein synthesis. In this review, we explore how defects in mitochondrial protein synthesis can arise due to the culmination of inherent mistakes that occur throughout the steps of gene expression. In turn, we examine the stepwise series of quality control processes that are needed to eliminate any mistakes that would perturb organelle homeostasis. We aim to provide an integrated view on the quality control mechanisms of mitochondrial protein synthesis and to identify promising avenues for future research.
    Keywords:  AFG3L2; MTRFR; OMA1; OPA1; OXA1L; RNA processing; cell stress; co-translational quality control; fusion open reading frames; membrane morphology; mitochondria; non-stop mRNA; post-transcriptional; protein synthesis; proteostasis; ribosome quality control; ribosomes
    DOI:  https://doi.org/10.1093/hmg/ddae012
  2. Nucleic Acids Res. 2024 Feb 01. pii: gkae040. [Epub ahead of print]
      Mitochondrial DNA (mtDNA) recombination in animals has remained enigmatic due to its uniparental inheritance and subsequent homoplasmic state, which excludes the biological need for genetic recombination, as well as limits tools to study it. However, molecular recombination is an important genome maintenance mechanism for all organisms, most notably being required for double-strand break repair. To demonstrate the existence of mtDNA recombination, we took advantage of a cell model with two different types of mitochondrial genomes and impaired its ability to degrade broken mtDNA. The resulting excess of linear DNA fragments caused increased formation of cruciform mtDNA, appearance of heterodimeric mtDNA complexes and recombinant mtDNA genomes, detectable by Southern blot and by long range PacBio® HiFi sequencing approach. Besides utilizing different electrophoretic methods, we also directly observed molecular complexes between different mtDNA haplotypes and recombination intermediates using transmission electron microscopy. We propose that the known copy-choice recombination by mitochondrial replisome could be sufficient for the needs of the small genome, thus removing the requirement for a specialized mitochondrial recombinase. The error-proneness of this system is likely to contribute to the formation of pathological mtDNA rearrangements.
    DOI:  https://doi.org/10.1093/nar/gkae040
  3. Trends Endocrinol Metab. 2024 Feb 01. pii: S1043-2760(24)00002-X. [Epub ahead of print]
      Mitochondria play multiple critical roles in cellular activity. In particular, mitochondrial translation is pivotal in the regulation of mitochondrial and cellular homeostasis. In this forum article, we discuss human mitochondrial tRNA metabolism and highlight its tight connection with various mitochondrial diseases caused by mutations in aminoacyl-tRNA synthetases, tRNAs, and tRNA-modifying enzymes.
    DOI:  https://doi.org/10.1016/j.tem.2024.01.002
  4. Cell Discov. 2024 Jan 30. 10(1): 11
      Mitochondrial rRNA modifications are essential for mitoribosome assembly and its proper function. The m4C methyltransferase METTL15 maintains mitochondrial homeostasis by catalyzing m4C839 located in 12 S rRNA helix 44 (h44). This modification is essential to fine-tuning the ribosomal decoding center and increasing decoding fidelity according to studies of a conserved site in Escherichia coli. Here, we reported a series of crystal structures of human METTL15-hsRBFA-h44-SAM analog, METTL15-hsRBFA-SAM, METTL15-SAM and apo METTL15. The structures presented specific interactions of METTL15 with different substrates and revealed that hsRBFA recruits METTL15 to mitochondrial small subunit for further modification instead of 12 S rRNA. Finally, we found that METTL15 deficiency caused increased reactive oxygen species, decreased membrane potential and altered cellular metabolic state. Knocking down METTL15 caused an elevated lactate secretion and increased levels of histone H4K12-lactylation and H3K9-lactylation. METTL15 might be a suitable model to study the regulation between mitochondrial metabolism and histone lactylation.
    DOI:  https://doi.org/10.1038/s41421-023-00634-z
  5. Nat Cancer. 2024 Jan 29.
      The mitochondrial genome (mtDNA) encodes essential machinery for oxidative phosphorylation and metabolic homeostasis. Tumor mtDNA is among the most somatically mutated regions of the cancer genome, but whether these mutations impact tumor biology is debated. We engineered truncating mutations of the mtDNA-encoded complex I gene, Mt-Nd5, into several murine models of melanoma. These mutations promoted a Warburg-like metabolic shift that reshaped tumor microenvironments in both mice and humans, consistently eliciting an anti-tumor immune response characterized by loss of resident neutrophils. Tumors bearing mtDNA mutations were sensitized to checkpoint blockade in a neutrophil-dependent manner, with induction of redox imbalance being sufficient to induce this effect in mtDNA wild-type tumors. Patient lesions bearing >50% mtDNA mutation heteroplasmy demonstrated a response rate to checkpoint blockade that was improved by ~2.5-fold over mtDNA wild-type cancer. These data nominate mtDNA mutations as functional regulators of cancer metabolism and tumor biology, with potential for therapeutic exploitation and treatment stratification.
    DOI:  https://doi.org/10.1038/s43018-023-00721-w