bims-mitran Biomed News
on Mitochondrial translation
Issue of 2023–12–31
four papers selected by
Andreas Kohler, Umeå University



  1. Proteins. 2023 Dec 25.
      Mitochondria play a central role in energy production and cellular metabolism. Mitochondria contain their own small genome (mitochondrial DNA, mtDNA) that carries the genetic instructions for proteins required for ATP synthesis. The mitochondrial proteome, including the mitochondrial transcriptional machinery, is subject to post-translational modifications (PTMs), including acetylation and phosphorylation. We set out to determine whether PTMs of proteins associated with mtDNA may provide a potential mechanism for the regulation of mitochondrial gene expression. Here, we focus on mitochondrial ribosomal protein L12 (MRPL12), which is thought to stabilize mitochondrial RNA polymerase (POLRMT) and promote transcription. Numerous acetylation sites of MRPL12 were identified by mass spectrometry. We employed amino acid mimics of the acetylated (lysine to glutamine mutants) and deacetylated (lysine to arginine mutants) versions of MRPL12 to interrogate the role of lysine acetylation in transcription initiation in vitro and mitochondrial gene expression in HeLa cells. MRPL12 acetyl and deacetyl protein mimics were purified and assessed for their ability to impact mtDNA promoter binding of POLRMT. We analyzed mtDNA content and mitochondrial transcript levels in HeLa cells upon overexpression of acetyl and deacetyl mimics of MRPL12. Our results suggest that MRPL12 single-site acetyl mimics do not change the mtDNA promoter binding ability of POLRMT or mtDNA content in HeLa cells. Individual acetyl mimics may have modest effects on mitochondrial transcript levels. We found that the mitochondrial deacetylase, Sirtuin 3, is capable of deacetylating MRPL12 in vitro, suggesting a potential role for dynamic acetylation controlling MRPL12 function in a role outside of the regulation of gene expression.
    Keywords:  acetylation; mitochondrial DNA; mitochondrial genome; mitochondrial proteins; post-translational protein modification; transcription
    DOI:  https://doi.org/10.1002/prot.26654
  2. Int J Cancer. 2023 Dec 27.
      Mitochondrial DNA plays a critical role in the pathophysiology of cancer. However, the associations between mitochondrial DNA copy number (mtDNA-CN) and cancer risk are controversial. Mendelian randomization (MR) analyses were performed using three independent instrumental variables (IVs) to explore potential associations between mtDNA-CN and 20 types of cancer. The three sets of IVs were primarily obtained from participants in the UK Biobank and the Cohorts for Heart and Aging Research in Genomic Epidemiology consortium using different methods. The outcome data of cancers were investigated using summary statistics from the FinnGen cohort. The potential causal associations were evaluated using the MR-Egger regression, weighted median, inverse-variance weighted (IVW), and weighted mode methods. The robustness of IVW estimates was validated using leave-one-out sensitivity analysis. Additionally, a meta-analysis was conducted to pool results from three sets of IVs. The results revealed that genetically predicted mtDNA-CN was not associated with cancer risk (odds ratio = 1.02; 95% confidence interval: 0.95-1.10). Subgroup analyses indicated no causal association between mtDNA-CN and breast, lung, prostate, skin, colorectal, gastric, liver, cervical uteri, esophageal, thyroid, bladder, pancreas, kidney, corpus uteri, ovary, brain, larynx, and anus cancers. It was observed that mtDNA-CN was associated with lip, oral cavity, and testis cancers. However, these results should be interpreted with caution because a small number of patients with lip and oral cavity or testis cancers were included. The comprehensive MR analysis demonstrated that mtDNA-CN is not a suitable biomarker for tumor risk assessment.
    Keywords:  Mendelian randomization; cancer risk; mitochondrial DNA
    DOI:  https://doi.org/10.1002/ijc.34833
  3. Sci Rep. 2023 Dec 27. 13(1): 23058
      Heteroplasmic mammalian embryos between genetically distant species fail to develop to term, preventing transmission of xenomitochondrial DNA to progeny. However, there is no direct evidence indicating the mechanisms by which species specificity of the mitochondrial genome is ensured during mammalian development. Here, we have uncovered a two-step strategy underlying the prevention of xenomitochondrial DNA transmission in mouse embryos harboring bovine mitochondria (mtB-M embryos). First, mtB-M embryos showed metabolic disorder by transient increase of reactive oxygen species at the 4-cell stage, resulting in repressed development. Second, trophoblasts of mtB-M embryos led to implantation failure. Therefore, we tested cell aggregation with tetraploid embryos to compensate for the placentation of mtB-M embryos. The 14 mtB-M embryos harboring bovine mtDNAs developed to term at embryonic day 19.5. Taken together, our results show that contamination of bovine mtDNA is prohibited by embryonic lethality due to metabolic disruption and failure of placentation, suggesting these represent xenomitochondrial elimination mechanisms in mammalian embryos.
    DOI:  https://doi.org/10.1038/s41598-023-50444-2
  4. Elife. 2023 Dec 27. pii: RP88008. [Epub ahead of print]12
      The transmission of DNA through extracellular vesicles (EVs) represents a novel genetic material transfer mechanism that may impact genome evolution and tumorigenesis. We aimed to investigate the potential for vertical DNA transmission within maternal endometrial EVs to the pre-implantation embryo and describe any effect on embryo bioenergetics. We discovered that the human endometrium secretes all three general subtypes of EV - apoptotic bodies (ABs), microvesicles (MVs), and exosomes (EXOs) - into the human endometrial fluid (EF) within the uterine cavity. EVs become uniformly secreted into the EF during the menstrual cycle, with the proportion of different EV populations remaining constant; however, MVs contain significantly higher levels of mitochondrial (mt)DNA than ABs or EXOs. During the window of implantation, MVs contain an eleven-fold higher level of mtDNA when compared to cells-of-origin within the receptive endometrium, which possesses a lower mtDNA content and displays the upregulated expression of mitophagy-related genes. Furthermore, we demonstrate the internalization of EV-derived nuclear-encoded (n)DNA/mtDNA by trophoblast cells of murine embryos, which associates with a reduction in mitochondrial respiration and ATP production. These findings suggest that the maternal endometrium suffers a reduction in mtDNA content during the preconceptional period, that nDNA/mtDNA become packaged into secreted EVs that the embryo uptakes, and that the transfer of DNA to the embryo within EVs occurs alongside the modulation of bioenergetics during implantation.
    Keywords:  developmental biology; endometrium; exosomes; extracellular vesicles; human; maternal-embryonic crosstalk; medicine; metabolism; mitochondrial DNA; mouse
    DOI:  https://doi.org/10.7554/eLife.88008