bims-mitran Biomed News
on Mitochondrial translation
Issue of 2023–07–09
one paper selected by
Andreas Kohler, University of Graz



  1. J Cell Sci. 2023 Jul 04. pii: jcs.260822. [Epub ahead of print]
      Molecular functions of many human proteins remain unstudied, despite the demonstrated association with diseases or pivotal molecular structures, such as mitochondrial DNA (mtDNA). This small genome is crucial for proper functioning of mitochondria, the energy-converting organelles. In mammals, mtDNA is arranged into macromolecular complexes called nucleoids that serve as functional stations for its maintenance and expression. Here, we aimed to explore an uncharacterized protein C17orf80, which was previously detected close to the nucleoid components by proximity-labelling mass spectrometry. To investigate the subcellular localization and function of C17orf80, we took an advantage of immunofluorescence microscopy, interaction proteomics and several biochemical assays. We demonstrate that C17orf80 is a mitochondrial membrane-associated protein that interacts with nucleoids even when mtDNA replication is inhibited. In addition, we show that C17orf80 is not essential for mtDNA maintenance and mitochondrial gene expression in cultured human cells. These results provide a basis for uncovering the molecular function of C17orf80 and the nature of its association with nucleoids, possibly leading to new insights about mtDNA and its expression.
    Keywords:  2'; 3'-dideoxycytidine; C17orf80; Mitochondria; Mitochondrial nucleoid; mtDNA
    DOI:  https://doi.org/10.1242/jcs.260822