bims-mitpro Biomed News
on Mitochondrial proteostasis
Issue of 2025–12–21
two papers selected by
Andreas Kohler, Umeå University



  1. Elife. 2025 Dec 16. pii: RP98889. [Epub ahead of print]13
      The majority of mitochondrial proteins are encoded in the nuclear genome. Many of them lack clear targeting signals. Therefore, what constitutes the entire mitochondrial proteome is still unclear. We here build on our previously developed bi-genomic (BiG) split-GFP assay (Bader et al., 2020) to solidify the list of matrix and inner membrane mitochondrial proteins. The assay relies on one fragment (GFP1-10) encoded in the mitochondrial DNA enabling specific visualization of only the proteins tagged with a smaller fragment, GFP11, and localized to the mitochondrial matrix or the inner membrane. We used the SWAp-Tag (SWAT) strategy to tag every protein with GFP11 and mated them with the BiG GFP strain. Imaging the collection in six different conditions allowed us to visualize almost 400 mitochondrial proteins, 50 of which were never visualized in mitochondria before, and many are poorly studied dually localized proteins. We use structure-function analysis to characterize the dually localized protein Gpp1, revealing an upstream start codon that generates a mitochondrial targeting signal and explore its unique function. We also show how this data can be applied to study mitochondrial inner membrane protein topology and sorting. This work brings us closer to finalizing the mitochondrial proteome and the freely distributed library of GFP11-tagged strains will be a useful resource to study protein localization, biogenesis, and interactions.
    Keywords:  S. cerevisiae; automated microscopy; biochemistry; cell biology; chemical biology; dual localization; mitochondria; mitochondrial proteome; protein targeting; yeast genetics
    DOI:  https://doi.org/10.7554/eLife.98889
  2. Nat Commun. 2025 Dec 14.
      Mitochondria play a central role in metabolism and biosynthesis, but function also as platforms that perceive and communicate environmental and physiological stressors to the nucleus and distal tissues. Systemic mitochondrial signaling is thought to synchronize and amplify stress responses throughout the whole body, but during severe or chronic damage, overactivation of mitochondrial stress pathways may be maladaptive and exacerbate aging and metabolic disorders. Here we uncover a protective micro(mi)RNA response to mtDNA damage in Caenorhabditis elegans that prolongs tissue health and function by interfering with mitochondrial stress signaling. Acting within muscle cells, we show that the miRNA miR-71 is induced during severe mitochondrial damage by the combined activities of DAF-16, HIF-1, and ATFS-1, where it restores sarcomere structure and animal locomotion by directly suppressing the inordinate activation of DVE-1, a key regulator of the mitochondrial unfolded protein response (UPRmt). Indirectly, miR-71 also reduces the levels of multiple neuro- and insulin-like peptides and their secretion machinery, resulting in decreased cell-non-autonomous signaling of mitochondrial stress from muscle to glia cells. miR-71 therefore beneficially coordinates the suppression of both local and systemic mitochondrial stress pathways during severe organelle dysfunction. These findings open the possibility that metabolic disorders could be ameliorated by limiting the overactivation of mitochondrial stress responses through targeted small RNAs.
    DOI:  https://doi.org/10.1038/s41467-025-67198-2