bims-mitpro Biomed News
on Mitochondrial proteostasis
Issue of 2025–12–07
two papers selected by
Andreas Kohler, Umeå University



  1. Nat Commun. 2025 Dec 03.
      Mitochondrial dysfunction underlies a wide range of human diseases, including primary mitochondrial disorders, neurodegeneration, cancer, and ageing. To preserve cellular homeostasis, organisms have evolved adaptive mechanisms that coordinate nuclear and mitochondrial gene expression. Here, we use genome-wide CRISPR knockout screening to identify cell fitness pathways that support survival under impaired mitochondrial protein synthesis. The strongest suppressor of aberrant mitochondrial translation defects - besides a compendium of known mitochondrial translation quality control factors - is the loss of the vacuolar-type H+-ATPase (v-ATPase), a key regulator of intracellular acidification, nutrient sensing, and growth signaling. We show that partial v-ATPase loss reciprocally modulates mitochondrial membrane potential (ΔΨm) and cristae structure in both cancer cell lines and mitochondrial disease patient-derived models. Our findings uncover an extra-organellar buffering mechanism whereby partial v-ATPase inhibition mitigates mitochondrial dysfunction by altering pH homeostasis and driving metabolic rewiring as a protective response that promotes cell fitness.
    DOI:  https://doi.org/10.1038/s41467-025-66656-1
  2. J Mol Cell Biol. 2025 Dec 02. pii: mjaf047. [Epub ahead of print]
      Mitochondria are essential organelles responsible for generating ATP through oxidative phosphorylation (OXPHOS). Despite having their own genome, mitochondria rely on a complex interplay with nuclear-encoded proteins to maintain their function, as mutations in these proteins can lead to mitochondrial dysfunction and associated diseases. Mutations in the SLIRP (stem-loop interacting RNA-binding protein) gene are known to cause severe human mitochondrial diseases, and loss of SLIRP function can impair mitochondrial mRNA stability and translation. However, in vivo roles of the SLIRP protein remain inadequately understood. Drosophila melanogaster serves as a powerful model for studying mitochondrial function, particularly in the context of reproductive system development and gametogenesis. In this study, we focus on the role of the fly Slirp2 in oogenesis. Loss of Slirp2 impairs mitochondrial protein synthesis, leading to reduced OXPHOS efficiency, diminished ATP production, and disrupted insulin/mTOR signaling. These defects ultimately promote reactive oxygen species-induced programmed cell death, resulting in infertility. Our findings provide novel insights into the mechanistic role of Slirp2 in mitochondrial function and reproductive biology in vivo. We demonstrate that Slirp2 exhibits species-specific regulation of mitochondrial translation, revealing its complex, context-dependent function. These results have broader implications for understanding mitochondrial diseases, suggesting that the effects of Slirp2 mutations may vary across different organisms and tissue types.
    Keywords:  SLIRP; Slirp2; mitochondrial diseases; oogenesis
    DOI:  https://doi.org/10.1093/jmcb/mjaf047