bims-mitpro Biomed News
on Mitochondrial proteostasis
Issue of 2025–11–30
three papers selected by
Andreas Kohler, Umeå University



  1. bioRxiv. 2025 Oct 14. pii: 2025.10.13.682092. [Epub ahead of print]
      Mitochondrial biogenesis requires the import of ∼1,000-1,500 nuclear-encoded proteins across the Translocase of Outer Membrane (TOM) and the Translocase of Inner Membrane (TIM) 22 or 23 complexes. Protein import defects cannot only impair mitochondrial respiration but also cause mitochondrial Precursor Overaccumulation Stress (mPOS) in the cytosol. Recent studies showed that specific mutations in the nuclear-encoded Adenine Nucleotide Translocase 1 (ANT1) cause musculoskeletal and neurological diseases by clogging TOM and TIM22 and inducing mPOS. Here, we found that overexpression of MFB1 , encoding the mitochondrial F-box protein 1, suppresses cell growth defect caused by a clogger allele of AAC2 , the yeast homolog of Ant1. Disruption of MFB1 synergizes with a clogger allele of aac2 to inhibit cell growth. This is accompanied by increased retention of mitochondrial proteins in the cytosol, suggesting exacerbated defect in mitochondrial protein import. Proximity-dependent biotin identification (BioID) suggested that Mfb1 interacts with several mitochondrial surface proteins including Tom22, a component of the TOM complex. Loss of MFB1 under clogging conditions activates genes encoding cytosolic chaperones including HSP31 . Interestingly, disruption of HSP31 creates a synthetic lethality with protein import clogging under respiring conditions. We propose that Mfb1 functions to maintain mitochondrial protein import competency under clogging conditions, whereas Hsp31 plays an important role in protecting the cytosol against mPOS. Mutations in DJ-1, the human homolog of Hsp31, and mitochondria-associated F-box proteins (eg., Fbxo7) are known to cause early-onset Parkinson's disease. Our work may help to better understand how these mutations affect cellular proteostasis and cause neurodegeneration.
    DOI:  https://doi.org/10.1101/2025.10.13.682092
  2. Elife. 2025 Nov 26. pii: RP105541. [Epub ahead of print]14
      SYTL5 is a member of the Synaptotagmin-Like (SYTL) protein family that differs from the Synaptotagmin family by having a unique N-terminal Synaptotagmin homology domain that directly interacts with the small GTPase RAB27A. Several SYTL protein family members have been implicated in plasma membrane transport and exocytosis, but the specific function of SYTL5 remains unknown. We here show that SYTL5 is a RAB27A effector and that both proteins localise to mitochondria and vesicles containing mitochondrial material. Mitochondrial recruitment of SYTL5 depends on its interaction with functional RAB27A. We demonstrate that SYTL5-RAB27A positive vesicles containing mitochondrial material, autophagy proteins and LAMP1 form during hypoxia and that depletion of SYTL5 and RAB27A reduces mitophagy under hypoxia mimicking conditions, indicating a role for these proteins in mitophagy. Indeed, we find that SYTL5 interacts with proteins involved in vesicle-mediated transport and cellular response to stress and that its depletion compromises mitochondrial respiration and increases glucose uptake. Intriguingly, SYTL5 expression is significantly reduced in tumours of the adrenal gland and correlates positively with survival for patients with adrenocortical carcinoma.
    Keywords:  ACC; Mitochondria; RAB27A; SYTL5; cell biology; hypoxia; mitophagy; none
    DOI:  https://doi.org/10.7554/eLife.105541
  3. Cell Death Differ. 2025 Nov 25.
      Prohibitins (PHBs) are predominantly located at the inner mitochondrial membrane, displaying significant roles in tumor progression, invasion, and apoptotic resistance, often overexpressed in primary tumors. Importantly, we developed a synthetic molecule, fluorizoline, that induces apoptosis by selectively targeting PHBs in various cancer cell lines and primary samples from different hematological neoplasms. Fluorizoline induces apoptosis by activating the pro-apoptotic branch of the integrated stress response (ISR) pathway in HeLa and HAP1 cells, specifically via the ATF4-CHOP-NOXA axis. We identified compensatory mechanisms for four ISR-related kinases, with HRI emerging as the primary kinase responsible for the activation of the ISR and apoptosis induction, implicating mitochondrial stress in ISR activation. Here, we investigate the mitochondrial stress response signaling pathway responsible for activating HRI after targeting PHBs either by fluorizoline treatment or by PHBs downregulation in HeLa and HAP1 cancer cell lines. In this study, we describe how PHBs regulate the localization of the mitochondrial stress sensor DELE1, leading to ISR activation and apoptosis induction in HeLa and HAP1 cells. Our findings demonstrate that DELE1 promotes ISR activation upon fluorizoline treatment and PHBs downregulation. Although fluorizoline treatment activates the cleavage of long DELE1 (L-DELE1) to its cleaved form (S-DELE1), OMA1 was found to be dispensable for activating the ISR upon fluorizoline treatment. Furthermore, our findings indicate a potential impairment of the mitochondrial protein import machinery upon targeting PHBs, as the import of other mitochondrial proteins beyond DELE1 is also disrupted. These findings reveal a previously unknown physiological role of PHBs in preserving the mitochondrial protein import pre-sequence pathway, possibly due to the interaction between PHBs and DNAJC19. This novel insight underscores the potential of targeting PHBs, such as with fluorizoline, to overwhelm mitochondrial stress in cancer.
    DOI:  https://doi.org/10.1038/s41418-025-01618-0