bims-mitpro Biomed News
on Mitochondrial proteostasis
Issue of 2025–07–06
two papers selected by
Andreas Kohler, Umeå University



  1. Nat Rev Mol Cell Biol. 2025 Jul 03.
      Mitochondria contain about 1,000-1,500 different proteins, most of which are encoded by the nuclear genome and synthesized in the cytosol, although a handful are specified by the mitochondrial DNA and translated within mitochondria. The coordinated transport of nucleus-encoded proteins into mitochondria, followed by their proper folding, assembly and/or integration into mitochondrial membranes, is central to mitochondrial biogenesis. In this Review, we describe the pathways and machineries for protein transport across and insertion into the inner and outer mitochondrial membranes, as well as the targeting and sorting signals, and energy requirements for these processes. These machineries include the TOM and SAM complexes in the outer membrane and the TIM complexes in the inner membrane, and some components in the intermembrane space. We emphasize recent developments in our understanding of the protein structures of the transport machineries and discuss mechanisms for the shift of protein localization and correction of mislocalization.
    DOI:  https://doi.org/10.1038/s41580-025-00865-w
  2. Nat Commun. 2025 Jul 01. 16(1): 5465
      The healthy heart relies on mitochondrial fatty acid β-oxidation (FAO) to sustain its high energy demands. FAO deficiencies can cause muscle weakness, cardiomyopathy, and, in severe cases, neonatal/infantile mortality. Although FAO deficits are thought to induce mitochondrial stress and activate mitophagy, a quality control mechanism that eliminates damaged mitochondria, the mechanistic link in the heart remains unclear. Here we show that mitophagy is unexpectedly suppressed in FAO-deficient hearts despite pronounced mitochondrial stress, using a cardiomyocyte-specific carnitine palmitoyltransferase 2 (CPT2) knockout model. Multi-omics profiling reveals impaired PINK1/Parkin signaling and dysregulation of PARL, a mitochondrial protease essential for PINK1 processing. Strikingly, deletion of USP30, a mitochondrial deubiquitinase that antagonizes PINK1/Parkin function, restores mitophagy, improves cardiac function, and significantly extends survival in FAO-deficient animals. These findings redefine the mitophagy response in FAO-deficient hearts and establish USP30 as a promising therapeutic target for metabolic cardiomyopathies and broader heart failure characterized by impaired FAO.
    DOI:  https://doi.org/10.1038/s41467-025-60670-z