bims-mitpro Biomed News
on Mitochondrial proteostasis
Issue of 2025–06–01
two papers selected by
Andreas Kohler, Umeå University



  1. Elife. 2025 May 30. pii: RP93621. [Epub ahead of print]13
      Mitochondria-mediated cell death is critically regulated by bioactive lipids derived from sphingolipid metabolism. The lipid aldehyde trans-2-hexadecenal (t-2-hex) induces mitochondrial dysfunction from yeast to humans. Here, we apply unbiased transcriptomic, functional genomics, and chemoproteomic approaches in the yeast model to uncover the principal mechanisms and biological targets underlying this lipid-induced mitochondrial inhibition. We find that loss of Hfd1 fatty aldehyde dehydrogenase function efficiently sensitizes cells for t-2-hex inhibition and apoptotic cell death. Excess of t-2-hex causes a profound transcriptomic response with characteristic hallmarks of impaired mitochondrial protein import, like activation of mitochondrial and cytosolic chaperones or proteasomal function and severe repression of translation. We confirm that t-2-hex stress induces rapid accumulation of mitochondrial pre-proteins and protein aggregates and subsequent activation of Hsf1- and Rpn4-dependent gene expression. By saturated transposon mutagenesis, we find that t-2-hex tolerance requires an efficient heat shock response and specific mitochondrial and ER functions and that mutations in ribosome, protein, and amino acid biogenesis are beneficial upon t-2-hex stress. We further show that genetic and pharmacological inhibition of protein translation causes t-2-hex resistance, indicating that loss of proteostasis is the predominant consequence of the pro-apoptotic lipid. Several TOM subunits, including the central Tom40 channel, are lipidated by t-2-hex in vitro and mutation of accessory subunits Tom20 or Tom70 confers t-2-hex tolerance. Moreover, the Hfd1 gene dose determines the strength of t-2-hex mediated inhibition of mitochondrial protein import, and Hfd1 co-purifies with Tom70. Our results indicate that the transport of mitochondrial precursor proteins through the outer mitochondrial membrane is sensitively inhibited by the pro-apoptotic lipid and thus represents a hotspot for pro- and anti-apoptotic signaling.
    Keywords:  S. cerevisiae; apoptosis; biochemistry; chemical biology; genetics; genomics; lipid signaling; mitochondrial protein import; proteostasis; sphingolipid metabolism; yeast
    DOI:  https://doi.org/10.7554/eLife.93621
  2. Biol Chem. 2025 May 27.
      The mitochondrial intermembrane space (IMS) houses proteins essential for redox regulation, protein import, signaling, and energy metabolism. Protein import into the IMS is mediated by dedicated pathways, including the disulfide relay pathway for oxidative folding. In addition, various IMS-traversing import pathways potentially expose unfolded proteins, representing threats to proteostasis. This trafficking of precursors coincides with unique biophysical challenges in the IMS, including a confined volume, elevated temperature, variable pH and high levels of reactive oxygen species. Ultrastructural properties and import supercomplex formation ameliorate these challenges. Nonetheless, IMS proteostasis requires constant maintenance by chaperones, folding catalysts, and proteases to counteract misfolding and aggregation. The IMS plays a key role in stress signaling, where proteostasis disruptions trigger responses including the integrated stress response (ISR) activated by mitochondrial stress (ISRmt) and responses to cytosolic accumulation of mitochondrial protein precursors. This review explores the biology and mechanisms governing IMS proteostasis, presents models, which have been employed to decipher IMS-specific stress responses, and discusses open questions.
    Keywords:  IMS; mitochondria; protein import; proteostasis; stress responses
    DOI:  https://doi.org/10.1515/hsz-2025-0108