bims-mitpro Biomed News
on Mitochondrial proteostasis
Issue of 2024–08–18
three papers selected by
Andreas Kohler, Umeå University



  1. J Cell Biol. 2024 Nov 04. pii: e202307036. [Epub ahead of print]223(11):
      The outer mitochondrial membrane (OMM) creates a boundary that imports most of the mitochondrial proteome while removing extraneous or damaged proteins. How the OMM senses aberrant proteins and remodels to maintain OMM integrity remains unresolved. Previously, we identified a mitochondrial remodeling mechanism called the mitochondrial-derived compartment (MDC) that removes a subset of the mitochondrial proteome. Here, we show that MDCs specifically sequester proteins localized only at the OMM, providing an explanation for how select mitochondrial proteins are incorporated into MDCs. Remarkably, selective sorting into MDCs also occurs within the OMM, as subunits of the translocase of the outer membrane (TOM) complex are excluded from MDCs unless assembly of the TOM complex is impaired. Considering that overloading the OMM with mitochondrial membrane proteins or mistargeted tail-anchored membrane proteins induces MDCs to form and sequester these proteins, we propose that one functional role of MDCs is to create an OMM-enriched trap that segregates and sequesters excess proteins from the mitochondrial surface.
    DOI:  https://doi.org/10.1083/jcb.202307036
  2. PLoS Biol. 2024 Aug 15. 22(8): e3002449
      Protein import and genome replication are essential processes for mitochondrial biogenesis and propagation. The J-domain proteins Pam16 and Pam18 regulate the presequence translocase of the mitochondrial inner membrane. In the protozoan Trypanosoma brucei, their counterparts are TbPam16 and TbPam18, which are essential for the procyclic form (PCF) of the parasite, though not involved in mitochondrial protein import. Here, we show that during evolution, the 2 proteins have been repurposed to regulate the replication of maxicircles within the intricate kDNA network, the most complex mitochondrial genome known. TbPam18 and TbPam16 have inactive J-domains suggesting a function independent of heat shock proteins. However, their single transmembrane domain is essential for function. Pulldown of TbPam16 identifies a putative client protein, termed MaRF11, the depletion of which causes the selective loss of maxicircles, akin to the effects observed for TbPam18 and TbPam16. Moreover, depletion of the mitochondrial proteasome results in increased levels of MaRF11. Thus, we have discovered a protein complex comprising TbPam18, TbPam16, and MaRF11, that controls maxicircle replication. We propose a working model in which the matrix protein MaRF11 functions downstream of the 2 integral inner membrane proteins TbPam18 and TbPam16. Moreover, we suggest that the levels of MaRF11 are controlled by the mitochondrial proteasome.
    DOI:  https://doi.org/10.1371/journal.pbio.3002449
  3. Clin Transl Med. 2024 Aug;14(8): e1806
       BACKGROUND: The induction of mitochondrial quality control (MQC) mechanisms is essential for the re-establishment of mitochondrial homeostasis and cellular bioenergetics during periods of stress. Although MQC activation has cardioprotective effects in various cardiovascular diseases, its precise role and regulatory mechanisms in alcoholic cardiomyopathy (ACM) remain incompletely understood.
    METHODS: We explored whether two mitochondria-related proteins, phosphoglycerate mutase 5 (Pgam5) and prohibitin 2 (Phb2), influence MQC in male mice during ACM.
    RESULTS: Myocardial Pgam5 expression was upregulated in a male mouse model of ACM. Notably, following ACM induction, heart dysfunction was markedly reversed in male cardiomyocyte-specific Pgam5 knockout (Pgam5cKO) mice. Meanwhile, in alcohol-treated male mouse-derived neonatal cardiomyocytes, Pgam5 depletion preserved cell survival and restored mitochondrial dynamics, mitophagy, mitochondrial biogenesis and the mitochondrial unfolded protein response (mtUPR). We further found that in alcohol-treated cardiomyocyte, Pgam5 binds Phb2 and induces its dephosphorylation at Ser91. Alternative transduction of phospho-mimetic (Phb2S91D) and phospho-defective (Phb2S9A) Phb2 mutants attenuated and enhanced, respectively, alcohol-related mitochondrial dysfunction in cardiomyocytes. Moreover, transgenic male mice expressing Phb2S91D were resistant to alcohol-induced heart dysfunction.
    CONCLUSIONS: We conclude that ACM-induced Pgam5 upregulation results in Pgam5-dependent Phb2S91 dephosphorylation, leading to MQC destabilisation and mitochondrial dysfunction in heart. Therefore, modulating the Pgam5/Phb2 interaction could potentially offer a novel therapeutic strategy for ACM in male mice.
    HIGHLIGHTS: Pgam5 knockout attenuates alcohol-induced cardiac histopathology and heart dysfunction in male mice. Pgam5 KO reduces alcohol-induced myocardial inflammation, lipid peroxidation and metabolic dysfunction in male mice. Pgam5 depletion protects mitochondrial function in alcohol-exposed male mouse cardiomyocytes. Pgam5 depletion normalises MQC in ACM. EtOH impairs MQC through inducing Phb2 dephosphorylation at Ser91. Pgam5 interacts with Phb2 and induces Phb2 dephosphorylation. Transgenic mice expressing a Ser91 phospho-mimetic Phb2 mutant are resistant to ACM.
    Keywords:  MQC; Pgam5; Phb2; alcoholic cardiomyopathy
    DOI:  https://doi.org/10.1002/ctm2.1806