bims-mitpro Biomed News
on Mitochondrial proteostasis
Issue of 2024–07–21
six papers selected by
Andreas Kohler, Umeå University



  1. Cell Rep. 2024 Jul 17. pii: S2211-1247(24)00802-7. [Epub ahead of print]43(8): 114473
      Mitochondria require the constant import of nuclear-encoded proteins for proper functioning. Impaired protein import not only depletes mitochondria of essential factors but also leads to toxic accumulation of un-imported proteins outside the organelle. Here, we investigate the consequences of impaired mitochondrial protein import in human cells. We demonstrate that un-imported proteins can clog the mitochondrial translocase of the outer membrane (TOM). ATAD1, a mitochondrial ATPase, removes clogged proteins from TOM to clear the entry gate into the mitochondria. ATAD1 interacts with both TOM and stalled proteins, and its knockout results in extensive accumulation of mitochondrial precursors as well as decreased protein import. Increased ATAD1 expression contributes to improved fitness of cells with inefficient mitochondrial protein import. Overall, we demonstrate the importance of the ATAD1 quality control pathway in surveilling protein import and its contribution to cellular health.
    Keywords:  AAA ATPase; ATAD1; CP: Cell biology; CP: Metabolism; TOM clogging; mitochondrial protein import; mitochondrial stress; protein quality control; proteotoxicity
    DOI:  https://doi.org/10.1016/j.celrep.2024.114473
  2. iScience. 2024 Jul 19. 27(7): 110185
      Mitochondrial ribosomes (mitoribosomes) have undergone substantial evolutionary structural remodeling accompanied by loss of ribosomal RNA, while acquiring unique protein subunits located on the periphery. We generated CRISPR-mediated knockouts of all 14 unique (mitochondria-specific/supernumerary) human mitoribosomal proteins (snMRPs) in the small subunit to study the effect on mitoribosome assembly and protein synthesis, each leading to a unique mitoribosome assembly defect with variable impact on mitochondrial protein synthesis. Surprisingly, the stability of mS37 was reduced in all our snMRP knockouts of the small and large ribosomal subunits and patient-derived lines with mitoribosome assembly defects. A redox-regulated CX9C motif in mS37 was essential for protein stability, suggesting a potential mechanism to regulate mitochondrial protein synthesis. Together, our findings support a modular assembly of the human mitochondrial small ribosomal subunit mediated by essential supernumerary subunits and identify a redox regulatory role involving mS37 in mitochondrial protein synthesis in health and disease.
    Keywords:  biochemistry; biological sciences; cell biology; molecular biology
    DOI:  https://doi.org/10.1016/j.isci.2024.110185
  3. Methods Mol Biol. 2024 ;2839 99-110
      Metal ion homeostasis in mitochondria is essential to maintaining proper cellular physiology. However, the ability of metals to bind off target or form complexes with multiple metabolites presents major challenges to understanding the mechanisms that govern this homeostasis. Adding further to the complexity, some of the major mitochondrial transporters have shown substrate promiscuity. In many cases, mitochondrial metals are found in the matrix compartment that is surrounded by the impermeable inner membrane. Four major classes of transporters facilitate the movement of solute across the inner membrane. These are mitochondrial carrier family, ATP-binding cassette transporters, mitochondrial pyruvate carriers, and sideroflexins. For iron, the matrix is the site of iron-sulfur clusters and heme synthesis and therefore transport must occur in a coordinated fashion with the cellular needs for these critical cofactors. Iron could be transported in numerous forms as it has been shown to form complexes with abundant metabolites such as citrate, nucleotides, or glutathione. Here, we describe assays to study iron (or any metal) transport by mitochondrial carrier family proteins expressed in Lactococcus lactis using a nisin-controlled expression system.
    Keywords:  Iron; Mitochondria; Mitochondrial carrier family; Mitochondrial inner membrane; Transport
    DOI:  https://doi.org/10.1007/978-1-0716-4043-2_6
  4. Cell Death Dis. 2024 Jul 16. 15(7): 505
      During oxidative phosphorylation, mitochondria continuously produce reactive oxygen species (ROS), and untimely ROS clearance can subject mitochondria to oxidative stress, ultimately resulting in mitochondrial damage. Mitophagy is essential for maintaining cellular mitochondrial quality control and homeostasis, with activation involving both ubiquitin-dependent and ubiquitin-independent pathways. Over the past decade, numerous studies have indicated that different forms of regulated cell death (RCD) are connected with mitophagy. These diverse forms of RCD have been shown to be regulated by mitophagy and are implicated in the pathogenesis of a variety of diseases, such as tumors, degenerative diseases, and ischemia‒reperfusion injury (IRI). Importantly, targeting mitophagy to regulate RCD has shown excellent therapeutic potential in preclinical trials, and is expected to be an effective strategy for the treatment of related diseases. Here, we present a summary of the role of mitophagy in different forms of RCD, with a focus on potential molecular mechanisms by which mitophagy regulates RCD. We also discuss the implications of mitophagy-related RCD in the context of various diseases.
    DOI:  https://doi.org/10.1038/s41419-024-06804-5
  5. bioRxiv. 2024 Jul 09. pii: 2024.07.05.602170. [Epub ahead of print]
      Neurodegenerative diseases are often characterized by mitochondrial dysfunction. In Alzheimer's disease, abnormal tau phosphorylation disrupts mitophagy, a quality control process through which damaged organelles are selectively removed from the mitochondrial network. The precise mechanism through which this occurs remains unclear. Previously, we showed that tau which has been mutated at Thr-231 to glutamic acid to mimic an Alzheimer's-relevant phospho-epitope expressed early in disease selectively inhibits oxidative stress-induced mitophagy in C. elegans . Here, we use immortalized mouse hippocampal neuronal cell lines to extend that result into mammalian cells. Specifically, we show that phosphomimetic tau at Ser-396/404 (EC) or Thr-231/Ser-235 (EM) partly inhibits mitophagy induction by paraquat, a potent inducer of mitochondrial oxidative stress. Moreover, a combination of immunologic and biochemical approaches demonstrates that the levels of the mitophagy receptor FKBP8, significantly decrease in response to paraquat in cells expressing EC or EM tau mutants, but not in cells expressing wildtype tau. In contrast, paraquat treatment results in a decrease in the levels of the mitophagy receptors FUNDC1 and BNIP3 in the presence of both wildtype tau and the tau mutants. Interestingly, FKBP8 is normally trafficked to the endoplasmic reticulum during oxidative stress induced mitophagy, and our results support a model where this trafficking is impacted by disease-relevant tau, perhaps through a direct interaction. We provide new insights into the molecular mechanisms underlying tau pathology in Alzheimer's disease and highlight FKBP8 receptor as a potential target for mitigating mitochondrial dysfunction in neurodegenerative diseases.
    DOI:  https://doi.org/10.1101/2024.07.05.602170
  6. MicroPubl Biol. 2024 ;2024
      Mitophagy, the selective removal of dysfunctional mitochondria, is pivotal for the maintenance of neuronal function and survival. MEC-12/α-tubulin contributes to neuronal physiology through the regulation of microtubule assembly, intracellular transport and mitochondrial distribution. However, its role in mitochondrial dynamics and mitophagy remains obscure. Here, we demonstrate that MEC-12 influences mitochondrial morphology under basal conditions and regulates the axonal mitochondrial population. Impairment of MEC-12 results in compromised axonal mitophagy under both basal conditions and oxidative stress. Our results uncover the critical role of MEC-12/α-tubulin for maintaining a healthy mitochondrial population in axons and highlight the complex interplay between microtubules, mitophagy and neuronal health.
    DOI:  https://doi.org/10.17912/micropub.biology.001232