bims-mitpro Biomed News
on Mitochondrial proteostasis
Issue of 2023–12–10
three papers selected by
Andreas Kohler, Umeå University



  1. Nat Commun. 2023 Dec 02. 14(1): 7991
      Mitochondria contain their own genetic information and a dedicated translation system to express it. The mitochondrial ribosome is assembled from mitochondrial-encoded RNA and nuclear-encoded ribosomal proteins. Assembly is coordinated in the mitochondrial matrix by biogenesis factors that transiently associate with the maturing particle. Here, we present a structural snapshot of a large mitoribosomal subunit assembly intermediate containing 7 biogenesis factors including the GTPases GTPBP7 and GTPBP10. Our structure illustrates how GTPBP10 aids the folding of the ribosomal RNA during the biogenesis process, how this process is related to bacterial ribosome biogenesis, and why mitochondria require two biogenesis factors in contrast to only one in bacteria.
    DOI:  https://doi.org/10.1038/s41467-023-43599-z
  2. PeerJ. 2023 ;11 e16497
       Abstract Background: Recent studies indicate that endometrial hypoxia plays a critical role in adenomyosis (AM) development. Mitochondria are extremely sensitive to hypoxic damage, which can result in both morphological and functional impairment. Mitophagy is a crucial mechanism for preserving mitochondrial quality by selectively removing damaged mitochondria, thus ensuring the proper functioning of the entire mitochondrial network. In response to hypoxia, PINK1 is activated as a regulator of mitophagy, but its role in AM requires further study.
    Objective: To explore the potential mechanism of mitophagy mediated by PINK1 in the pathogenesis of AM.
    Method: The study compared PINK1, Parkin, OPTIN, P62, and NDP52 protein expression levels in patients with or without AM using clinical specimens and an AM mouse model. Pathological changes were compared using HE staining. Immunofluorescence and western blot were used to detect protein expression levels. Endometrial stromal cells (ESC) were isolated and examined for mitophagy, protein expression level, and cell invasion ability.
    Results: Both the endometrial tissue from patients with AM and AM ESC displayed an upregulation of protein levels for PINK1, Parkin, OPTIN, P62, and NDP52 when compared with the control group. Then, HE staining confirmed the successful establishment of the AM mouse model. Moreover, the ultrastructural analysis using transmission electron microscopy revealed that AM mice's endometrial glandular epithelial and stromal cells had exhibited swollen, deformed, and reduced mitochondria along with an increase in the number of lysosomes and mitochondrial autophagosomes. The protein levels of PINK1, Parkin, OPTIN, P62, and NDP52 in uterine tissue from AM mice were noticeably increased, accompanied by a considerable upregulation of ROS levels compared to the control group. In addition, cells in the AM group showed remarkably elevated mitophagy and invasion potentials compared to the control group. In contrast, the cell invasion ability decreased following PINK1 knockdown using the RNA interference technique.
    Conclusion: The high levels of PINK1-mediated mitophagy have been found in AM. The upregulation in mitophagy contributes to mitochondrial damage, which may result in the abnormal invasion characteristic of AM.
    Keywords:  Adenomyosis; Mitophagy; PINK1
    DOI:  https://doi.org/10.7717/peerj.16497
  3. Inflammation. 2023 Dec 06.
      Diabetic nephropathy (DN) is a common diabetic complication. Studies show that mitophagy inhibition induced-ferroptosis plays a crucial role in DN progression. UHRF1 is associated with mitophagy and is highly expression in DN patients, however, the effect of UHRF1 on DN is still unclear. Thus, in this study, we aimed to investigate whether UHRF1 involves DN development by the mitophagy/ferroptosis pathway. We overexpressed UHRF1 using an adeno-associated virus 9 (AAV9) system in high-fat diet/streptozotocin-induced diabetic mice. Renal function index, pathological changes, mitophagy factors, and ferroptosis factors were detected in vivo. High-glucose cultured human renal proximal tubular (HK-2) cells were used as in vitro models to investigate the mechanism of UHRF1 in DN. We found that diabetic mice exhibited kidney damage, which was alleviated by UHRF1 overexpression. UHRF1 overexpression promoted PINK1-mediated mitophagy and inhibited the expression of thioredoxin interacting protein (TXNIP), a factor associated with mitochondrial dysfunction. Additionally, UHRF1 overexpression alleviated lipid peroxidation and free iron accumulation, and upregulated the expression of GPX4 and Slc7a11, indicating the inhibition effect of UHRF1 overexpression on ferroptosis. We further investigated the mechanism of UHRF1 in the mitophagy/ferroptosis pathway in DN. We found that UHRF1 overexpression promoted PINK1-mediated mitophagy via inhibiting TXNIP expression, thus suppressing ferroptosis. These findings confirmed that upregulation of UHRF1 expression alleviates DN, indicating that UHRF1 has a reno-protective effect against DN.
    Keywords:  UHRF1; diabetic nephropathy; ferroptosis; mitophagy
    DOI:  https://doi.org/10.1007/s10753-023-01940-0