bims-mitpro Biomed News
on Mitochondrial proteostasis
Issue of 2023–12–03
seven papers selected by
Andreas Kohler, Umeå University



  1. Nat Metab. 2023 Nov 30.
      Maintaining optimal mitochondrial function is a feature of health. Mitophagy removes and recycles damaged mitochondria and regulates the biogenesis of new, fully functional ones preserving healthy mitochondrial functions and activities. Preclinical and clinical studies have shown that impaired mitophagy negatively affects cellular health and contributes to age-related chronic diseases. Strategies to boost mitophagy have been successfully tested in model organisms, and, recently, some have been translated into clinics. In this Review, we describe the basic mechanisms of mitophagy and how mitophagy can be assessed in human blood, the immune system and tissues, including muscle, brain and liver. We outline mitophagy's role in specific diseases and describe mitophagy-activating approaches successfully tested in humans, including exercise and nutritional and pharmacological interventions. We describe how mitophagy is connected to other features of ageing through general mechanisms such as inflammation and oxidative stress and forecast how strengthening research on mitophagy and mitophagy interventions may strongly support human health.
    DOI:  https://doi.org/10.1038/s42255-023-00930-8
  2. Front Physiol. 2023 ;14 1263420
      Most mitochondrial proteins are targeted to the organelle by N-terminal mitochondrial targeting sequences (MTSs, or "presequences") that are recognized by the import machinery and subsequently cleaved to yield the mature protein. MTSs do not have conserved amino acid compositions, but share common physicochemical properties, including the ability to form amphipathic α-helical structures enriched with basic and hydrophobic residues on alternating faces. The lack of strict sequence conservation implies that some polypeptides can be mistargeted to mitochondria, especially under cellular stress. The pathogenic accumulation of proteins within mitochondria is implicated in many aging-related neurodegenerative diseases, including Alzheimer's, Parkinson's, and Huntington's diseases. Mechanistically, these diseases may originate in part from mitochondrial interactions with amyloid-β precursor protein (APP) or its cleavage product amyloid-β (Aβ), α-synuclein (α-syn), and mutant forms of huntingtin (mHtt), respectively, that are mediated in part through their associations with the mitochondrial protein import machinery. Emerging evidence suggests that these amyloidogenic proteins may present cryptic targeting signals that act as MTS mimetics and can be recognized by mitochondrial import receptors and transported into different mitochondrial compartments. Accumulation of these mistargeted proteins could overwhelm the import machinery and its associated quality control mechanisms, thereby contributing to neurological disease progression. Alternatively, the uptake of amyloidogenic proteins into mitochondria may be part of a protein quality control mechanism for clearance of cytotoxic proteins. Here we review the pathomechanisms of these diseases as they relate to mitochondrial protein import and effects on mitochondrial function, what features of APP/Aβ, α-syn and mHtt make them suitable substrates for the import machinery, and how this information can be leveraged for the development of therapeutic interventions.
    Keywords:  amyloids; cryptic targeting; mitochondria; neurodegeneration; protein import; targeting signals
    DOI:  https://doi.org/10.3389/fphys.2023.1263420
  3. Redox Biol. 2023 Nov 23. pii: S2213-2317(23)00369-5. [Epub ahead of print]68 102968
      Sepsis is a dysregulated host response to an infection, characterized by organ failure. The pathophysiology is complex and incompletely understood, but mitochondria appear to play a key role in the cascade of events that culminate in multiple organ failure and potentially death. In shaping immune responses, mitochondria fulfil dual roles: they not only supply energy and metabolic intermediates crucial for immune cell activation and function but also influence inflammatory and cell death pathways. Importantly, mitochondrial dysfunction has a dual impact, compromising both immune system efficiency and the metabolic stability of end organs. Dysfunctional mitochondria contribute to the development of a hyperinflammatory state and loss of cellular homeostasis, resulting in poor clinical outcomes. Already in early sepsis, signs of mitochondrial dysfunction are apparent and consequently, strategies to optimize mitochondrial function in sepsis should not only prevent the occurrence of mitochondrial dysfunction, but also cover the repair of the sustained mitochondrial damage. Here, we discuss mitochondrial quality control (mtQC) in the pathogenesis of sepsis and exemplify how mtQC could serve as therapeutic target to overcome mitochondrial dysfunction. Hence, replacing or repairing dysfunctional mitochondria may contribute to the recovery of organ function in sepsis. Mitochondrial biogenesis is a process that results in the formation of new mitochondria and is critical for maintaining a pool of healthy mitochondria. However, exacerbated biogenesis during early sepsis can result in accumulation of structurally aberrant mitochondria that fail to restore bioenergetics, produce excess reactive oxygen species (ROS) and exacerbate the disease course. Conversely, enhancing mitophagy can protect against organ damage by limiting the release of mitochondrial-derived damage-associated molecules (DAMPs). Furthermore, promoting mitophagy may facilitate the growth of healthy mitochondria by blocking the replication of damaged mitochondria and allow for post sepsis organ recovery through enabling mitophagy-coupled biogenesis. The remaining healthy mitochondria may provide an undamaged scaffold to reproduce functional mitochondria. However, the kinetics of mtQC in sepsis, specifically mitophagy, and the optimal timing for intervention remain poorly understood. This review emphasizes the importance of integrating mitophagy induction with mtQC mechanisms to prevent undesired effects associated with solely the induction of mitochondrial biogenesis.
    Keywords:  Mitochondrial biogenesis; Mitochondrial dynamics; Mitochondrial quality control; Mitophagy; Sepsis
    DOI:  https://doi.org/10.1016/j.redox.2023.102968
  4. Mol Neurobiol. 2023 Nov 28.
      AFG3L2 is a zinc metalloprotease and an ATPase localized in an inner mitochondrial membrane involved in mitochondrial quality control of several nuclear- and mitochondrial-encoded proteins. Mutations in AFG3L2 lead to diseases like slow progressive ataxia, which is a neurological disorder. This review delineates the cellular functions of AFG3L2 and its dysfunction that leads to major clinical outcomes, which include spinocerebellar ataxia type 28, spastic ataxia type 5, and optic atrophy type 12. It summarizes all relevant AFG3L2 mutations associated with the clinical outcomes to understand the detailed mechanisms attributable to its structure-related multifaceted roles in proteostasis and quality control. We face early diagnostic challenges of ataxia and optic neuropathy due to asymptomatic parents and variable clinical manifestations due to heterozygosity/homozygosity of AFG3L2 mutations. This review intends to promote AFG3L2 as a putative prognostic or diagnostic marker. Functions, mutations, and clinical manifestations in AFG3L2, a mitochondrial AAA + ATPases.
    Keywords:  AFG3L2; Ataxia; Mitochondria; Neurological disorders; SCA28; Zinc metalloprotease
    DOI:  https://doi.org/10.1007/s12035-023-03768-z
  5. Eur J Clin Invest. 2023 Dec 01. e14138
      Mitochondrial dysfunction is a major hallmark of ageing and related chronic disorders. Controlled removal of damaged mitochondria by the autophagic machinery, a process known as mitophagy, is vital for mitochondrial homeostasis and cell survival. The central role of mitochondria in cellular metabolism places mitochondrial removal at the interface of key metabolic pathways affecting the biosynthesis or catabolism of acetyl-coenzyme A, nicotinamide adenine dinucleotide, polyamines, as well as fatty acids and amino acids. Molecular switches that integrate the metabolic status of the cell, like AMP-dependent protein kinase, protein kinase A, mechanistic target of rapamycin and sirtuins, have also emerged as important regulators of mitophagy. In this review, we discuss how metabolic regulation intersects with mitophagy. We place special emphasis on the metabolic regulatory circuits that may be therapeutically targeted to delay ageing and mitochondria-associated chronic diseases. Moreover, we identify outstanding knowledge gaps, such as the ill-defined distinction between basal and damage-induced mitophagy, which must be resolved to boost progress in this area.
    Keywords:  AMPK; NAD; acetyl-CoA; ageing; ageing-related disease; metabolism; mitophagy; spermidine
    DOI:  https://doi.org/10.1111/eci.14138
  6. Neurochem Int. 2023 Nov 27. pii: S0197-0186(23)00172-9. [Epub ahead of print] 105644
      PTEN-induced kinase 1 (PINK1) autophosphorylation-triggered mitophagy is the main mitophagic pathway in the nervous system. Moreover, multiple studies have confirmed that mitophagy is closely related to the occurrence and development of epilepsy. Therefore, we speculated that the PINK1 autophosphorylation may be involved in epileptogenesis by mediating mitophagic pathway. This study aimed to explore the contribution of activated PINK1 to epileptogenesis induced by pentylenetetrazol (PTZ) in Sprague‒Dawley rats. During PTZ-induced epileptogenesis, the levels of phosphorylated PINK1 were increased, accompanied by elevated mitophagy, mitochondria oxidative stress and neuronal damage. After microRNA intervention targeting translocase outer mitochondrial membrane 7 (TOM7) or overlapping with the m-AAA protease 1 homolog (OMA1), the levels of PINK1 phosphorylation, mitophagy, mitochondrial oxidative stress, neuronal injury were observed in the rats with induced epileptogenesis. Furthermore, inhibiting of the expression of TOM7, a positive regulator of PINK1 autophosphorylation, reversed the increase in PINK1 phosphorylation and alleviated mitophagy, neuronal injury, thereby preventing epileptogenesis. In contrast, reducing the levels of OMA1, a negative regulator of PINK1 autophosphorylation, led to increased phosphorylation of PINK1, accompanied by aggravated neuronal injury and ultimately, epileptogenesis. This study confirmed the contribution of activated PINK1 to PTZ-induced epileptogenesis and suggested that the inhibition of PINK1 autophosphorylation may assist in preventing epileptogenesis.
    Keywords:  Epileptogenesis; Mitochondrial oxidative stress; Mitophagy; Neuronal injury; PTEN-induced kinase 1
    DOI:  https://doi.org/10.1016/j.neuint.2023.105644
  7. PLoS One. 2023 ;18(11): e0294700
      Alcoholic myopathy is caused by chronic consumption of alcohol (ethanol) and is characterized by weakness and atrophy of skeletal muscle. Regular exercise is one of the important ways to prevent or alleviate skeletal muscle myopathy. However, the beneficial effects and the exact mechanisms underlying regular exercise on alcohol myopathy remain unclear. In this study, a model of alcoholic myopathy was established using zebrafish soaked in 0.5% ethanol. Additionally, these zebrafish were intervened to swim for 8 weeks at an exercise intensity of 30% of the absolute critical swimming speed (Ucrit), aiming to explore the beneficial effects and underlying mechanisms of regular exercise on alcoholic myopathy. This study found that regular exercise inhibited protein degradation, improved locomotion ability, and increased muscle fiber cross-sectional area (CSA) in ethanol-treated zebrafish. In addition, regular exercise increases the functional activity of mitochondrial respiratory chain (MRC) complexes and upregulates the expression levels of MRC complexes. Regular exercise can also improve oxidative stress and mitochondrial dynamics in zebrafish skeletal muscle induced by ethanol. Additionally, regular exercise can activate mitochondrial biogenesis and inhibit mitochondrial unfolded protein response (UPRmt). Together, our results suggest regular exercise is an effective intervention strategy to improve mitochondrial homeostasis to attenuate alcoholic myopathy.
    DOI:  https://doi.org/10.1371/journal.pone.0294700