Aging Cell. 2025 Jul 16. e70175
The misclassification of functional genomic loci as pseudogenes has long obscured critical regulators of cellular homeostasis, particularly in aging-related pathways. One such locus, originally annotated as RPL29P31, encodes a 17-kDa protein now redefined as PERMIT (Protein that Mediates ER-Mitochondria Trafficking). Through rigorous experimental validation-including antibody development, gene editing, lipidomics, and translational models-p17/PERMIT has emerged as a previously unrecognized mitochondrial trafficking chaperone. Under aging or injury-induced stress, p17 mediates the ER-to-mitochondria translocation of Ceramide Synthase 1 (CerS1), facilitating localized C18-ceramide synthesis and autophagosome recruitment to initiate mitophagy. Loss of p17 impairs mitochondrial quality control, accelerating neurodegeneration, and sensorimotor decline in both injury and aging models. This Perspective highlights p17 as a paradigm-shifting discovery at the intersection of lipid signaling, mitochondrial biology, and genome reannotation, and calls for a broader reassessment of the "noncoding" genome in aging research. We summarize a rigorous multi-platform validation pipeline-including gene editing, antibody generation, lipidomics, proteomics, and functional rescue assays-that reclassified p17 as a bona fide mitochondrial trafficking protein. Positioned at the intersection of lipid metabolism, organelle dynamics, and genome reannotation, p17 exemplifies a growing class of overlooked proteins emerging from loci historically labeled as pseudogenes, urging a systematic reevaluation of the "noncoding" genome in aging research.