Cell Death Dis. 2025 Mar 12. 16(1): 173
Mohr-Tranebjaerg syndrome (MTS) is a rare X-linked recessive neurodegenerative disorder caused by mutations in the Translocase of Inner Mitochondrial Membrane 8A (TIMM8A) gene, which encodes TIMM8a, a protein localized to the mitochondrial intermembrane space (IMS). The pathophysiology of MTS remains poorly understood. To investigate the molecular mechanisms underlying MTS, we established induced pluripotent stem cells (iPSCs) from a male MTS patient carrying a novel TIMM8A mutation (c.225-229del, p.Q75fs95*), referred to as MTS-iPSCs. To generate an isogenic control, we introduced the same mutation into healthy control iPSCs (CTRL-iPSCs) using the Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated protein 9 (CRISPR/Cas9), resulting in mutant iPSCs (MUT-iPSCs). We differentiated the three iPSC lines into neurons and evaluated their mitochondrial function and neuronal development. Both MTS- and MUT-iPSCs exhibited impaired neuronal differentiation, characterized by smaller somata, fewer branches, and shorter neurites in iPSC-derived neurons. Additionally, these neurons showed increased susceptibility to apoptosis under stress conditions, as indicated by elevated levels of cytochrome c and cleaved caspase-3. Mitochondrial function analysis revealed reduced protein levels and activity of complex IV, diminished ATP synthesis, and increased reactive oxygen species (ROS) generation in MTS- and MUT-neurons. Furthermore, transmission electron microscopy revealed mitochondrial fragmentation in MTS-neurons. RNA sequencing identified differentially expressed genes (DEGs) involved in axonogenesis, synaptic activity, and apoptosis-related pathways. Among these DEGs, coiled-coil-helix-coiled-coil-helix domain-containing 2 (CHCHD2), which encodes a mitochondrial IMS protein essential for mitochondrial homeostasis, was significantly downregulated in MTS-neurons. Western blot analysis confirmed decreased CHCHD2 protein levels in both MTS- and MUT-neurons. Overexpression of CHCHD2 rescued mitochondrial dysfunction and promoted neurite elongation in MTS-neurons, suggesting that CHCHD2 acts as a downstream effector of TIMM8a in the pathogenesis of MTS. In summary, loss-of-function of TIMM8a leads to a downstream reduction in CHCHD2 levels, collectively impairing neurogenesis by disrupting mitochondrial homeostasis. TIMM8a mutation (p.Q75fs95*) leads to mitochondrial dysfunction and neuronal defects in iPSC-derived neurons from patient with Mohr-Tranebjaerg syndrome, which are rescued by overexpression of CHCHD2. TIMM8a translocase of inner mitochondrial membrane 8a, CHCHD2 coiled-coil-helix-coiled-coil-helix domain-containing protein 2, MTS Mohr-Tranebjaerg syndrome, I mitochondrial complex I, II mitochondrial complex II, III mitochondrial complex III, IV mitochondrial complex IV, Q coenzyme Q10, Cyt c cytochrome c.