bims-mitmed Biomed News
on Mitochondrial medicine
Issue of 2024–04–21
seventeen papers selected by
Dario Brunetti, Fondazione IRCCS Istituto Neurologico



  1. Expert Opin Pharmacother. 2024 Apr 18. 1-11
       INTRODUCTION: Friedreich ataxia (FRDA) is a rare autosomal recessive disease, marked by loss of coordination as well as impaired neurological, endocrine, orthopedic, and cardiac function. There are many symptomatic medications for FRDA, and many clinical trials have been performed, but only one FDA-approved medication exists.
    AREAS COVERED: The relative absence of the frataxin protein (FXN) in FRDA causes mitochondrial dysfunction, resulting in clinical manifestations. Currently, the only approved treatment for FRDA is an Nrf2 activator called omaveloxolone (Skyclarys). Patients with FRDA also rely on various symptomatic medications for treatment. Because there is only one approved medication for FRDA, clinical trials continue to advance in FRDA. Although some trials have not met their endpoints, many current and upcoming clinical trials provide exciting possibilities for the treatment of FRDA.
    EXPERT OPINION: The approval of omaveloxolone provides a major advance in FRDA therapeutics. Although well tolerated, it is not curative. Reversal of deficient frataxin levels with gene therapy, protein replacement, or epigenetic approaches provides the most likely prospect for enduring, disease-modifying therapy in the future.
    Keywords:  Friedreich ataxia; Nrf2; frataxin; mFARS; omav
    DOI:  https://doi.org/10.1080/14656566.2024.2343782
  2. J Cell Biol. 2024 May 06. pii: e202403190. [Epub ahead of print]223(5):
      Using an engineered mitochondrial clogger, Krakowczyk et al. (https://doi.org/10.1083/jcb.202306051) identified the OMA1 protease as a critical component that eliminates import failure at the TOM translocase in mammalian cells, providing a novel quality control mechanism that is distinct from those described in yeast.
    DOI:  https://doi.org/10.1083/jcb.202403190
  3. Transl Neurodegener. 2024 Apr 17. 13(1): 23
      Mitochondria have multiple functions such as supplying energy, regulating the redox status, and producing proteins encoded by an independent genome. They are closely related to the physiology and pathology of many organs and tissues, among which the brain is particularly prominent. The brain demands 20% of the resting metabolic rate and holds highly active mitochondrial activities. Considerable research shows that mitochondria are closely related to brain function, while mitochondrial defects induce or exacerbate pathology in the brain. In this review, we provide comprehensive research advances of mitochondrial biology involved in brain functions, as well as the mitochondria-dependent cellular events in brain physiology and pathology. Furthermore, various perspectives are explored to better identify the mitochondrial roles in neurological diseases and the neurophenotypes of mitochondrial diseases. Finally, mitochondrial therapies are discussed. Mitochondrial-targeting therapeutics are showing great potentials in the treatment of brain diseases.
    Keywords:  Brain; Mitochondria; Mitochondrial transfer; Neurological disorders
    DOI:  https://doi.org/10.1186/s40035-024-00409-w
  4. Genome Res. 2024 Apr 16.
      Mitochondrial DNA (mtDNA) variants cause a range of diseases from severe pediatric syndromes to aging-related conditions. The percentage of mtDNA copies carrying a pathogenic variant, variant allele frequency (VAF), must reach a threshold before a biochemical defect occurs, termed the biochemical threshold. Whether the often-cited biochemical threshold of >60% VAF is similar across mtDNA variants and cell types is unclear. In our systematic review, we sought to identify the biochemical threshold of mtDNA variants in relation to VAF by human tissue/cell type. We used controlled vocabulary terms to identify articles measuring oxidative phosphorylation (OXPHOS) complex activities in relation to VAF. We identified 76 eligible publications, describing 69, 12, 16, and 49 cases for complexes I, III, IV, and V, respectively. Few studies evaluated OXPHOS activities in diverse tissue types, likely reflective of clinical access. A number of cases with similar VAFs for the same pathogenic variant had varying degrees of residual activity of the affected complex, alluding to the presence of modifying variants. Tissues and cells with VAFs <60% associated with low complex activities were described, suggesting the possibility of a biochemical threshold of <60%. Using Kendall rank correlation tests, the VAF of the m.8993T > G variant correlated with complex V activity in skeletal muscle (τ = -0.58, P = 0.01, n = 13); however, no correlation was observed in fibroblasts (P = 0.7, n = 9). Our systematic review highlights the need to investigate the biochemical threshold over a wider range of VAFs in disease-relevant cell types to better define the biochemical threshold for specific mtDNA variants.
    DOI:  https://doi.org/10.1101/gr.278200.123
  5. Sci Adv. 2024 Apr 19. 10(16): eadm8815
      Organisms surveil and respond to their environment using behaviors entrained by metabolic cues that reflect food availability. Mitochondria act as metabolic hubs and at the center of mitochondrial energy production is the protonmotive force (PMF), an electrochemical gradient generated by metabolite consumption. The PMF serves as a central integrator of mitochondrial status, but its role in governing metabolic signaling is poorly understood. We used optogenetics to dissipate the PMF in Caenorhabditis elegans tissues to test its role in food-related behaviors. Our data demonstrate that PMF reduction in the intestine is sufficient to initiate locomotor responses to acute food deprivation. This behavioral adaptation requires the cellular energy regulator AMP-activated protein kinase (AMPK) in neurons, not in the intestine, and relies on mitochondrial dynamics and axonal trafficking. Our results highlight a role for intestinal PMF as an internal metabolic cue, and we identify a bottom-up signaling axis through which changes in the PMF trigger AMPK activity in neurons to promote foraging behavior.
    DOI:  https://doi.org/10.1126/sciadv.adm8815
  6. Life Sci Alliance. 2024 Jul;pii: e202402609. [Epub ahead of print]7(7):
      Immunometabolism investigates the intricate relationship between the immune system and cellular metabolism. This study delves into the consequences of mitochondrial frataxin (FXN) depletion, the primary cause of Friedreich's ataxia (FRDA), a debilitating neurodegenerative condition characterized by impaired coordination and muscle control. By using single-cell RNA sequencing, we have identified distinct cellular clusters within the cerebellum of an FRDA mouse model, emphasizing a significant loss in the homeostatic response of microglial cells lacking FXN. Remarkably, these microglia deficient in FXN display heightened reactive responses to inflammatory stimuli. Furthermore, our metabolomic analyses reveal a shift towards glycolysis and itaconate production in these cells. Remarkably, treatment with butyrate counteracts these immunometabolic changes, triggering an antioxidant response via the itaconate-Nrf2-GSH pathways and suppressing the expression of inflammatory genes. Furthermore, we identify Hcar2 (GPR109A) as a mediator involved in restoring the homeostasis of microglia without FXN. Motor function tests conducted on FRDA mice underscore the neuroprotective attributes of butyrate supplementation, enhancing neuromotor performance. In conclusion, our findings elucidate the role of disrupted homeostatic function in cerebellar microglia in the pathogenesis of FRDA. Moreover, they underscore the potential of butyrate to mitigate inflammatory gene expression, correct metabolic imbalances, and improve neuromotor capabilities in FRDA.
    DOI:  https://doi.org/10.26508/lsa.202402609
  7. Nat Aging. 2024 Apr 16.
      Recent investigations into heterochronic parabiosis have unveiled robust rejuvenating effects of young blood on aged tissues. However, the specific rejuvenating mechanisms remain incompletely elucidated. Here we demonstrate that small extracellular vesicles (sEVs) from the plasma of young mice counteract pre-existing aging at molecular, mitochondrial, cellular and physiological levels. Intravenous injection of young sEVs into aged mice extends their lifespan, mitigates senescent phenotypes and ameliorates age-associated functional declines in multiple tissues. Quantitative proteomic analyses identified substantial alterations in the proteomes of aged tissues after young sEV treatment, and these changes are closely associated with metabolic processes. Mechanistic investigations reveal that young sEVs stimulate PGC-1α expression in vitro and in vivo through their miRNA cargoes, thereby improving mitochondrial functions and mitigating mitochondrial deficits in aged tissues. Overall, this study demonstrates that young sEVs reverse degenerative changes and age-related dysfunction, at least in part, by stimulating PGC-1α expression and enhancing mitochondrial energy metabolism.
    DOI:  https://doi.org/10.1038/s43587-024-00612-4
  8. Cell Death Discov. 2024 Apr 16. 10(1): 178
      Mitochondrial dysfunction represents one of the most common molecular hallmarks of both sporadic and familial forms of amyotrophic lateral sclerosis (ALS), a neurodegenerative disorder caused by the selective degeneration and death of motor neurons. The accumulation of misfolded proteins on and within mitochondria, as observed for SOD1 G93A mutant, correlates with a drastic reduction of mitochondrial respiration and the inhibition of metabolites exchanges, including ADP/ATP and NAD+/NADH, across the Voltage-Dependent Anion-selective Channel 1 (VDAC1), the most abundant channel protein of the outer mitochondrial membrane. Here, we show that the AAV-mediated upregulation of VDAC1 in the spinal cord of transgenic mice expressing SOD1 G93A completely rescues the mitochondrial respiratory profile. This correlates with the increased activity and levels of key regulators of mitochondrial functions and maintenance, namely the respiratory chain Complex I and the sirtuins (Sirt), especially Sirt3. Furthermore, the selective increase of these mitochondrial proteins is associated with an increase in Tom20 levels, the receptor subunit of the TOM complex. Overall, our results indicate that the overexpression of VDAC1 has beneficial effects on ALS-affected tissue by stabilizing the Complex I-Sirt3 axis.
    DOI:  https://doi.org/10.1038/s41420-024-01949-w
  9. Pediatr Neurol. 2024 Mar 06. pii: S0887-8994(24)00075-4. [Epub ahead of print]155 91-103
       BACKGROUND: Pathogenic variants in the NDUFV1 gene disrupt mitochondrial complex I, leading to neuroregression with leukoencephalopathy and basal ganglia involvement on neuroimaging. This study aims to provide a concise review on NDUFV1-related disorders while adding the largest cohort from a single center to the existing literature.
    METHODS: We retrospectively collected genetically proven cases of NDUFV1 pathogenic variants from our center over the last decade and explored reported instances in existing literature. Magnetic resonance imaging (MRI) patterns observed in these patients were split into three types-Leigh (putamen, basal ganglia, thalamus, and brainstem involvement), mitochondrial leukodystrophy (ML) (cerebral white matter involvement with cystic cavitations), and mixed (both).
    RESULTS: Analysis included 44 children (seven from our center and 37 from literature). The most prevalent comorbidities were hypertonia, ocular abnormalities, feeding issues, and hypotonia at onset. Children with the Leigh-type MRI pattern exhibited significantly higher rates of breathing difficulties, whereas those with a mixed phenotype had a higher prevalence of dystonia. The c.1156C>T variant in exon 8 of the NDUFV1 gene was the most common variant among individuals of Asian ethnicity and is predominantly associated with irritability and dystonia. Seizures and Leigh pattern of MRI of the brain was found to be less commonly associated with this variant. Higher rate of mortality was observed in children with Leigh-type pattern on brain MRI and those who did not receive mitochondrial cocktail.
    CONCLUSIONS: MRI phenotyping might help predict outcome. Appropriate and timely treatment with mitochondrial cocktail may reduce the probability of death and may positively impact the long-term outcomes, regardless of the genetic variant or age of onset.
    Keywords:  Leigh syndrome; Mitochondrial cocktail; Mitochondrial complex-I disorder; NDUFV1
    DOI:  https://doi.org/10.1016/j.pediatrneurol.2024.02.012
  10. Neurogenetics. 2024 Apr 16.
      The reduced penetrance of TBP intermediate alleles and the recently proposed possible digenic TBP/STUB1 inheritance raised questions on the possible mechanism involved opening a debate on the existence of SCA48 as a monogenic disorder. We here report clinical and genetic results of two apparently unrelated patients carrying the same STUB1 variant(c.244G > T;p.Asp82Tyr) with normal TBP alleles and a clinical picture fully resembling SCA48, including cerebellar ataxia, dysarthria and mild cognitive impairment. This report provides supportive evidence that this specific ataxia can also occur as a monogenic disease, considering classical TBP allelic ranges.
    Keywords:   STUB1 ; TBP intermediate alleles; Cerebellar ataxia; SCA17; SCA48
    DOI:  https://doi.org/10.1007/s10048-024-00758-8
  11. Genetics. 2024 Apr 16. pii: iyae058. [Epub ahead of print]
      Mitochondrial genes can be naturally or artificially relocalized in the nuclear genome in a process known as allotopic expression, such is the case of the mitochondrial cox2 gene, encoding subunit II of cytochrome c oxidase (CcO). In yeast, cox2 can be allotopically expressed and is able to restore respiratory growth of a cox2-null mutant if the Cox2 subunit carries the W56R substitution within the first transmembrane stretch. However, the COX2W56R strain exhibits reduced growth rates and lower steady-state CcO levels when compared to wild-type yeast. Here, we investigated the impact of overexpressing selected candidate genes predicted to enhance internalization of the allotopic Cox2W56R precursor into mitochondria. The overproduction of Cox20, Oxa1, and Pse1 facilitated Cox2W56R precursor internalization, improving the respiratory growth of the COX2W56R strain. Overproducing TIM22 components had a limited effect on Cox2W56R import, while overproducing TIM23-related components showed a negative effect. We further explored the role of the Mgr2 subunit within the TIM23 translocator in the import process by deleting and overexpressing the MGR2 gene. Our findings indicate that Mgr2 is instrumental in modulating the TIM23 translocon to correctly sort Cox2W56R. We propose a biogenesis pathway followed by the allotopically produced Cox2 subunit based on the participation of the two different structural/functional forms of the TIM23 translocon, TIM23MOTOR and TIM23SORT, that must follow a concerted and sequential mode of action to insert Cox2W56R into the inner mitochondrial membrane in the correct Nout-Cout topology.
    Keywords:  Cox2; Mgr2 protein; TIM23 translocator; TIM23MOTOR; TIM23SORT; allotopic expression; protein import into mitochondria; subunit II of cytochrome c oxidase
    DOI:  https://doi.org/10.1093/genetics/iyae058
  12. Pharmacol Res. 2024 Apr 11. pii: S1043-6618(24)00114-2. [Epub ahead of print] 107170
      To determine the effects of SARS-CoV-2 infection on cellular metabolism, we conducted an exhaustive survey of the cellular metabolic pathways modulated by SARS-CoV-2 infection and confirmed their importance for SARS-CoV-2 propagation by cataloging the effects of specific pathway inhibitors. This revealed that SARS-CoV-2 strongly inhibits mitochondrial oxidative phosphorylation (OXPHOS) resulting in increased mitochondrial reactive oxygen species (mROS) production. The elevated mROS stabilizes HIF-1α which redirects carbon molecules from mitochondrial oxidation through glycolysis and the pentose phosphate pathway (PPP) to provide substrates for viral biogenesis. mROS also induces the release of mitochondrial DNA (mtDNA) which activates innate immunity. The restructuring of cellular energy metabolism is mediated in part by SARS-CoV-2 Orf8 and Orf10 whose expression restructures nuclear DNA (nDNA) and mtDNA OXPHOS gene expression. These viral proteins likely alter the epigenome, either by directly altering histone modifications or by modulating mitochondrial metabolite substrates of epigenome modification enzymes, potentially silencing OXPHOS gene expression and contributing to long-COVID.
    Keywords:  Mitochondria; OXPHOS; SARS-CoV-2; epigenome; gene regulation; inhibitors; metabolism
    DOI:  https://doi.org/10.1016/j.phrs.2024.107170
  13. Proc Natl Acad Sci U S A. 2024 Apr 23. 121(17): e2317402121
      DNA damage and neurodegenerative disorders are intimately linked but the underlying mechanism remains elusive. Here, we show that persistent DNA lesions in tissue-resident macrophages carrying an XPF-ERCC1 DNA repair defect trigger neuroinflammation and neuronal cell death in mice. We find that microglia accumulate dsDNAs and chromatin fragments in the cytosol, which are sensed thereby stimulating a viral-like immune response in Er1Cx/- and naturally aged murine brain. Cytosolic DNAs are packaged into extracellular vesicles (EVs) that are released from microglia and discharge their dsDNA cargo into IFN-responsive neurons triggering cell death. To remove cytosolic dsDNAs and prevent inflammation, we developed targeting EVs to deliver recombinant DNase I to Er1Cx/- brain microglia in vivo. We show that EV-mediated elimination of cytosolic dsDNAs is sufficient to prevent neuroinflammation, reduce neuronal apoptosis, and delay the onset of neurodegenerative symptoms in Er1Cx/- mice. Together, our findings unveil a causal mechanism leading to neuroinflammation and provide a rationalized therapeutic strategy against age-related neurodegeneration.
    Keywords:  DNA damage; extracellular vesicles; microglia; neurodegeneration
    DOI:  https://doi.org/10.1073/pnas.2317402121
  14. Cell Metab. 2024 Apr 05. pii: S1550-4131(24)00091-3. [Epub ahead of print]
      On average, aging is associated with unfavorable changes in cellular metabolism, which are the processes involved in the storage and expenditure of energy. However, metabolic dysregulation may not occur to the same extent in all older individuals as people age at different rates. Those who are aging rapidly are at increased risk of adverse health outcomes and are said to be "frail." Here, we explore the links between frailty and metabolism, including metabolic contributors and consequences of frailty. We examine how metabolic diseases may modify the degree of frailty in old age and suggest that frailty may predispose toward metabolic disease. Metabolic interventions that can mitigate the degree of frailty in people are reviewed. New treatment strategies developed in animal models that are poised for translation to humans are also considered. We suggest that maintaining a youthful metabolism into older age may be protective against frailty.
    Keywords:  frailty index; frailty phenotype; metabolic dysregulation; metabolic syndrome; mouse models; protein restriction
    DOI:  https://doi.org/10.1016/j.cmet.2024.03.012
  15. Cell Death Discov. 2024 Apr 17. 10(1): 180
      Neurodegenerative disorders are characterized by the progressive loss of structure and function of neurons, often including the death of the neuron. Previously, we reported that, by removing the cell death stimulus, dying/injured neurons could survive and recover from the process of regulated cell death, even if the cells already displayed various signs of cellular damage. Now we investigated the role of mitochondrial dynamics (fission/fusion, biogenesis, mitophagy) in both degeneration and in recovery of neuronal cells. In neuronal PC12 cells, exposure to ethanol (EtOH) induced massive neurite loss along with widespread mitochondrial fragmentation, mitochondrial membrane potential loss, reduced ATP production, and decreased total mitochondrial volume. By removing EtOH timely all these mitochondrial parameters recovered to normal levels. Meanwhile, cells regrew neurites and survived. Study of the mitochondrial dynamics showed that autophagy was activated only during the cellular degeneration phase (EtOH treatment) but not in the recovery phase (EtOH removed), and it was not dependent on the Parkin/PINK1 mediated mitophagy pathway. Protein expression of key regulators of mitochondrial fission, phospho-Drp1Ser616 and S-OPA1, increased during EtOH treatment and recovered to normal levels after removing EtOH. In addition, the critical role of PGC-1α mediated mitochondrial biogenesis in cellular recovery was revealed: inhibition of PGC-1α using SR-18292 after EtOH removal significantly impeded recovery of mitochondrial damage, regeneration of neurites, and cell survival in a concentration-dependent manner. Taken together, our study showed reversibility of mitochondrial morphological and functional damage in stressed neuronal cells and revealed that PGC-1α mediated mitochondrial biogenesis played a critical role in the cellular recovery. This molecular mechanism could be a target for neuroprotection and neurorescue in neurodegenerative diseases.
    DOI:  https://doi.org/10.1038/s41420-024-01953-0
  16. FEBS Lett. 2024 Apr 19.
      Reactive oxygen species (ROS) are associated with oocyte maturation inhibition, and N-acetyl-l-cysteine (NAC) partially reduces their harmful effects. Mitochondrial E3 ubiquitin ligase 1 (Mul1) localizes to the mitochondrial outer membrane. We found that female Mul1-deficient mice are infertile, and their oocytes contain high ROS concentrations. After fertilization, Mul1-deficient embryos showed a DNA damage response (DDR) and abnormal preimplantation embryogenesis, which was rescued by NAC addition and ROS depletion. These observations clearly demonstrate that loss of Mul1 in oocytes increases ROS concentrations and triggers DDR, resulting in abnormal preimplantation embryogenesis. We conclude that manipulating the mitochondrial ROS levels in oocytes may be a potential therapeutic approach to target infertility.
    Keywords:  Mul1; Ros; female infertility; preimplantation development
    DOI:  https://doi.org/10.1002/1873-3468.14876
  17. Mol Neurodegener. 2024 Apr 14. 19(1): 34
       BACKGROUND: Hypometabolism tied to mitochondrial dysfunction occurs in the aging brain and in neurodegenerative disorders, including in Alzheimer's disease, in Down syndrome, and in mouse models of these conditions. We have previously shown that mitovesicles, small extracellular vesicles (EVs) of mitochondrial origin, are altered in content and abundance in multiple brain conditions characterized by mitochondrial dysfunction. However, given their recent discovery, it is yet to be explored what mitovesicles regulate and modify, both under physiological conditions and in the diseased brain. In this study, we investigated the effects of mitovesicles on synaptic function, and the molecular players involved.
    METHODS: Hippocampal slices from wild-type mice were perfused with the three known types of EVs, mitovesicles, microvesicles, or exosomes, isolated from the brain of a mouse model of Down syndrome or of a diploid control and long-term potentiation (LTP) recorded. The role of the monoamine oxidases type B (MAO-B) and type A (MAO-A) in mitovesicle-driven LTP impairments was addressed by treatment of mitovesicles with the irreversible MAO inhibitors pargyline and clorgiline prior to perfusion of the hippocampal slices.
    RESULTS: Mitovesicles from the brain of the Down syndrome model reduced LTP within minutes of mitovesicle addition. Mitovesicles isolated from control brains did not trigger electrophysiological effects, nor did other types of brain EVs (microvesicles and exosomes) from any genotype tested. Depleting mitovesicles of their MAO-B, but not MAO-A, activity eliminated their ability to alter LTP.
    CONCLUSIONS: Mitovesicle impairment of LTP is a previously undescribed paracrine-like mechanism by which EVs modulate synaptic activity, demonstrating that mitovesicles are active participants in the propagation of cellular and functional homeostatic changes in the context of neurodegenerative disorders.
    Keywords:  Alzheimer’s disease; Down syndrome; Exosome; Extracellular vesicle; Long-term potentiation; MAO-B; Microvesicle; Mitochondria; Mitovesicle; Neurodegenerative disease
    DOI:  https://doi.org/10.1186/s13024-024-00721-z