bims-mitmed Biomed News
on Mitochondrial medicine
Issue of 2023‒01‒29
nineteen papers selected by
Dario Brunetti
Fondazione IRCCS Istituto Neurologico


  1. Mov Disord Clin Pract. 2023 Jan;10(1): 145-147
      
    Keywords:  Leigh syndrome; MTFMT‐related mitochondrial disease; mobile dystonia
    DOI:  https://doi.org/10.1002/mdc3.13595
  2. Autophagy. 2023 Jan 24.
      Mitophagy and its variants are considered important salvage pathways to remove dysfunctional mitochondria. Non-canonical mitophagy, independent of autophagosome formation and including endosomal-dependent mitophagy, operate upon specific injury. In a recent paper, we describe a new mechanism where, upon mtDNA damage, mitochondrial nucleoids are eliminated via an endosomal-mitophagy pathway. Using proximity proteomics, we identified the proteins required for elimination of mutated mitochondrial nucleoids from the mitochondrial matrix. Among them, ATAD3 and SAMM50 control cristae architecture and nucleoid interaction, necessary for mtDNA extraction. In the mitochondrial outer membrane, SAMM50 coordinates with the retromer protein VPS35 to sequester mtDNA in endosomes and guide them towards elimination, thus avoiding the activation of an exacerbated immune response. Here, we summarize our findings and examine how this newly described pathway contributes to our understanding of mtDNA quality control.
    Keywords:  - mitophagy; endosomes; mtDNA
    DOI:  https://doi.org/10.1080/15548627.2023.2170959
  3. Nano Lett. 2023 Jan 23.
      The growing knowledge of the links between aberrant mitochondrial gene transcription and human diseases necessitates both an effective and dynamic approach to control mitochondrial DNA (mtDNA) transcription. To address this challenge, we developed a nanoparticle-based synthetic mitochondrial transcription regulator (MitoScript). MitoScript provides great colloidal stability, excellent biocompatibility, efficient cell uptake, and selective mitochondria targeting and can be monitored in live cells using near-infrared fluorescence. Notably, MitoScript controlled mtDNA transcription in a human cell line in an effective and selective manner. MitoScript targeting the light strand promoter region of mtDNA resulted in the downregulation of ND6 gene silencing, which eventually affected cell redox status, with considerably increased reactive oxygen species (ROS) generation. In summary, we developed MitoScript for the efficient, nonviral modification of mitochondrial DNA transcription. Our platform technology can potentially contribute to understanding the fundamental mechanisms of mitochondrial disorders and developing effective treatments for mitochondrial diseases.
    Keywords:  Artificial transcription factors; Mitochondria DNA (mtDNA) manipulations; Mitochondria-targeted delivery; Nanoclusters; Nanomedicine
    DOI:  https://doi.org/10.1021/acs.nanolett.2c03958
  4. Front Cardiovasc Med. 2022 ;9 1024481
      
    Keywords:  cardioprotection; extracellular vesicles; intercellular crosstalk; mitochondria delivery; mitochondrial quality control
    DOI:  https://doi.org/10.3389/fcvm.2022.1024481
  5. Trends Biochem Sci. 2023 Jan 24. pii: S0968-0004(22)00334-6. [Epub ahead of print]
      Coenzyme Q (CoQ) is a remarkably hydrophobic, redox-active lipid that empowers diverse cellular processes. Although most known for shuttling electrons between mitochondrial electron transport chain (ETC) complexes, the roles for CoQ are far more wide-reaching and ever-expanding. CoQ serves as a conduit for electrons from myriad pathways to enter the ETC, acts as a cofactor for biosynthetic and catabolic reactions, detoxifies damaging lipid species, and engages in cellular signaling and oxygen sensing. Many open questions remain regarding the biosynthesis, transport, and metabolism of CoQ, which hinders our ability to treat human CoQ deficiency. Here, we recount progress in filling these knowledge gaps, highlight unanswered questions, and underscore the need for novel tools to enable discoveries and improve the treatment of CoQ-related diseases.
    Keywords:  coenzyme Q; complex Q; lipids; mitochondria; oxidative phosphorylation; ubiquinone
    DOI:  https://doi.org/10.1016/j.tibs.2022.12.006
  6. J Vis Exp. 2023 Jan 06.
      Due to the decline in the quantity and quality of oocytes related to age, the fertility of women over 35 years of age has declined sharply. The molecular mechanisms that maintain oocyte quality remain unclear, thus it is difficult to increase the birth rate of women over 35 years old at present. Oocytes contain more mitochondria than any type of cell in the body, and any mitochondrial dysfunction can lead to reduced oocyte quality. In the 1990s, oocyte cytoplasmic transfer resulted in great success in human reproduction but was accompanied by ethical controversies. Autologous mitochondrial transplantation is expected to be a useful technique to increase the quality of oocytes that have decreased due to age. In the present study, we used adipose-derived stem cells from aged mice as a mitochondria donor to increase the quality of oocytes of aged mice. Further development of autologous mitochondrial transfer technology will provide a new and effective treatment for infertility in aged women.
    DOI:  https://doi.org/10.3791/64217
  7. EMBO J. 2023 Jan 27. e112309
      Hundreds of nucleus-encoded mitochondrial precursor proteins are synthesized in the cytosol and imported into mitochondria in a post-translational manner. However, the early processes associated with mitochondrial protein targeting remain poorly understood. Here, we show that in Saccharomyces cerevisiae, the cytosol has the capacity to transiently store mitochondrial matrix-destined precursors in dedicated deposits that we termed MitoStores. Competitive inhibition of mitochondrial protein import via clogging of import sites greatly enhances the formation of MitoStores, but they also form during physiological cell growth on nonfermentable carbon sources. MitoStores are enriched for a specific subset of nucleus-encoded mitochondrial proteins, in particular those containing N-terminal mitochondrial targeting sequences. Our results suggest that MitoStore formation suppresses the toxic potential of aberrantly accumulating mitochondrial precursor proteins and is controlled by the heat shock proteins Hsp42 and Hsp104. Thus, the cytosolic protein quality control system plays an active role during the early stages of mitochondrial protein targeting through the coordinated and localized sequestration of mitochondrial precursor proteins.
    Keywords:  chaperones; mitochondria; proteasome; protein aggregates; protein translocation
    DOI:  https://doi.org/10.15252/embj.2022112309
  8. Pharmacol Res. 2023 Jan 20. pii: S1043-6618(23)00028-2. [Epub ahead of print]188 106672
      Mitochondria are morphologically dynamic organelles frequently undergoing fission and fusion processes that regulate mitochondrial integrity and bioenergetics. These processes are considered critical for cell survival. The mitochondrial fission process regulates mitochondrial biogenesis and mitophagy. It is associated with apoptosis, while mitochondrial fusion controls the accurate distribution of mitochondrial DNA and metabolic substances across the mitochondria. Excessive mitochondrial fission results in mitochondrial structural changes, dysfunction, and cell damage. Accumulating evidence demonstrates that mitochondrial dynamics affect neurodegenerative and cardiovascular diseases along with several other diseases. Biological molecules regulating the process of mitochondrial fission are potential targets for developing therapeutic agents. Many natural products target the dynamin-related protein 1 (Drp1)-dependent mitochondrial fission pathway, and their inhibitory effects ameliorate mitochondrial fragmentation. In this article, we reviewed the research literature that describes Drp1-dependent inhibition as a mechanism for the protective effects of natural compounds.
    Keywords:  Apoptosis; Dynamin-related protein 1; Fission inhibitors; Free radical production; Herbal medicine; Mitochondrial fission; Mitochondrial fusion; Natural compound
    DOI:  https://doi.org/10.1016/j.phrs.2023.106672
  9. Nature. 2023 Jan 25.
      
    Keywords:  Biochemistry; Cell biology; Metabolism; Proteomics
    DOI:  https://doi.org/10.1038/d41586-023-00095-0
  10. Nat Cell Biol. 2023 Jan 23.
      Mitochondria are complex organelles with different compartments, each harbouring their own protein quality control factors. While chaperones of the mitochondrial matrix are well characterized, it is poorly understood which chaperones protect the mitochondrial intermembrane space. Here we show that cytosolic small heat shock proteins are imported under basal conditions into the mitochondrial intermembrane space, where they operate as molecular chaperones. Protein misfolding in the mitochondrial intermembrane space leads to increased recruitment of small heat shock proteins. Depletion of small heat shock proteins leads to mitochondrial swelling and reduced respiration, while aggregation of aggregation-prone substrates is countered in their presence. Charcot-Marie-Tooth disease-causing mutations disturb the mitochondrial function of HSPB1, potentially linking previously observed mitochondrial dysfunction in Charcot-Marie-Tooth type 2F to its role in the mitochondrial intermembrane space. Our results reveal that small heat shock proteins form a chaperone system that operates in the mitochondrial intermembrane space.
    DOI:  https://doi.org/10.1038/s41556-022-01074-9
  11. Science. 2023 Jan 27. 379(6630): 351-357
      The molecular mode of action of biguanides, including the drug metformin, which is widely used in the treatment of diabetes, is incompletely characterized. Here, we define the inhibitory drug-target interaction(s) of a model biguanide with mammalian respiratory complex I by combining cryo-electron microscopy and enzyme kinetics. We interpret these data to explain the selectivity of biguanide binding to different enzyme states. The primary inhibitory site is in an amphipathic region of the quinone-binding channel, and an additional binding site is in a pocket on the intermembrane-space side of the enzyme. An independent local chaotropic interaction, not previously described for any drug, displaces a portion of a key helix in the membrane domain. Our data provide a structural basis for biguanide action and enable the rational design of medicinal biguanides.
    DOI:  https://doi.org/10.1126/science.ade3332
  12. J Appl Physiol (1985). 2023 Jan 26.
      Exercise is a physiological stress that disrupts tissue and cellular homeostasis while enhancing systemic metabolic energy demand mainly through the increased workload of skeletal muscle. While the extensive focus has been on skeletal muscle adaptations to exercise, the liver senses these disruptions in metabolic energy homeostasis and responds to provide the required substrates to sustain increased demand. Hepatic metabolic flexibility is an energetically costly process that requires continuous mitochondrial production of the cellular currency ATP. To do so, the liver must maintain a healthy functioning mitochondrial pool, attained through well-regulated and dynamic processes. Intriguingly, some of these responses are sex-dependent. This mini-review examines the hepatic mitochondrial adaptations to exercise with a focus on sexual dimorphism.
    Keywords:  Exercise; Liver; Mitochondria; Mitophagy; Respiration
    DOI:  https://doi.org/10.1152/japplphysiol.00711.2022
  13. Nature. 2023 Jan 25.
      Mitochondria have crucial roles in cellular energetics, metabolism, signalling and quality control1-4. They contain around 1,000 different proteins that often assemble into complexes and supercomplexes such as respiratory complexes and preprotein translocases1,3-7. The composition of the mitochondrial proteome has been characterized1,3,5,6; however, the organization of mitochondrial proteins into stable and dynamic assemblies is poorly understood for major parts of the proteome1,4,7. Here we report quantitative mapping of mitochondrial protein assemblies using high-resolution complexome profiling of more than 90% of the yeast mitochondrial proteome, termed MitCOM. An analysis of the MitCOM dataset resolves >5,200 protein peaks with an average of six peaks per protein and demonstrates a notable complexity of mitochondrial protein assemblies with distinct appearance for respiration, metabolism, biogenesis, dynamics, regulation and redox processes. We detect interactors of the mitochondrial receptor for cytosolic ribosomes, of prohibitin scaffolds and of respiratory complexes. The identification of quality-control factors operating at the mitochondrial protein entry gate reveals pathways for preprotein ubiquitylation, deubiquitylation and degradation. Interactions between the peptidyl-tRNA hydrolase Pth2 and the entry gate led to the elucidation of a constitutive pathway for the removal of preproteins. The MitCOM dataset-which is accessible through an interactive profile viewer-is a comprehensive resource for the identification, organization and interaction of mitochondrial machineries and pathways.
    DOI:  https://doi.org/10.1038/s41586-022-05641-w
  14. Nat Commun. 2023 Jan 25. 14(1): 312
      Aerobic muscle activities predominantly depend on fuel energy supply by mitochondrial respiration, thus, mitochondrial activity enhancement may become a therapeutic intervention for muscle disturbances. The assembly of mitochondrial respiratory complexes into higher-order "supercomplex" structures has been proposed to be an efficient biological process for energy synthesis, although there is controversy in its physiological relevance. We here established Förster resonance energy transfer (FRET) phenomenon-based live imaging of mitochondrial respiratory complexes I and IV interactions using murine myoblastic cells, whose signals represent in vivo supercomplex assembly of complexes I, III, and IV, or respirasomes. The live FRET signals were well correlated with supercomplex assembly observed by blue native polyacrylamide gel electrophoresis (BN-PAGE) and oxygen consumption rates. FRET-based live cell screen defined that the inhibition of spleen tyrosine kinase (SYK), a non-receptor protein tyrosine kinase that belongs to the SYK/ zeta-chain-associated protein kinase 70 (ZAP-70) family, leads to an increase in supercomplex assembly in murine myoblastic cells. In parallel, SYK inhibition enhanced mitochondrial respiration in the cells. Notably, SYK inhibitor administration enhances exercise performance in mice. Overall, this study proves the feasibility of FRET-based respirasome assembly assay, which recapitulates in vivo mitochondrial respiration activities.
    DOI:  https://doi.org/10.1038/s41467-023-35865-x
  15. Cureus. 2022 Dec;14(12): e32709
      Mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome is a mitochondrial disease that lacks a definitive treatment. Lately, there has been an increased interest in the scientific community about the role of arginine in the short and long-term settings of the disease. We aim to conduct a systematic review of the clinical use of arginine in the management of MELAS and explore the role of arginine in the pathophysiology of the disease. We used PubMed advanced-strategy searches and only included full-text clinical trials on humans written in the English language. After applying the inclusion/exclusion criteria, four clinical trials were reviewed. We used the Meta-analysis of Observational Studies in Epidemiology (MOOSE) guidelines and Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) protocol for this systematic review. We used the Cochrane Collaboration risk-of-bias tool to assess the bias encountered in each study. Overall, IV arginine seems to be effective in improving symptoms during acute attacks of MELAS, while oral arginine supplementation increases endothelial function, preventing further stroke-like episodes.
    Keywords:  l-arginine; lactic acidosis; melas; melas syndrome; mitochondrial disease; mitochondrial encephalopathy; stroke
    DOI:  https://doi.org/10.7759/cureus.32709
  16. Stem Cell Res Ther. 2023 Jan 24. 14(1): 12
      BACKGROUND: Mesenchymal stem/stromal cells (MSCs) are multipotent cells with strong tissue repair and immunomodulatory properties. Due to their ability to repress pathogenic immune responses, and in particular T cell responses, they show therapeutic potential for the treatment of autoimmune diseases, organ rejection and graft versus host disease. MSCs have the remarkable ability to export their own mitochondria to neighboring cells in response to injury and inflammation. However, whether mitochondrial transfer occurs and has any role in the repression of CD4+ Th1 responses is unknown.METHODS AND RESULTS: In this report we have utilized CD4+ T cells from HNT TCR transgenic mice that develop Th1-like responses upon antigenic stimulation in vitro and in vivo. Allogeneic bone marrow-derived MSCs reduced the diabetogenic potential of HNT CD4+ T cells in vivo in a transgenic mouse model of disease. In co-culture experiments, we have shown that MSCs were able to reduce HNT CD4+ T cell expansion, expression of key effector markers and production of the effector cytokine IFNγ after activation. This was associated with the ability of CD4+ T cells to acquire mitochondria from MSCs as evidenced by FACS and confocal microscopy. Remarkably, transfer of isolated MSC mitochondria to CD4+ T cells resulted in decreased T cell proliferation and IFNγ production. These effects were additive with those of prostaglandin E2 secreted by MSCs. Finally, we demonstrated that both co-culture with MSCs and transfer of isolated MSC mitochondria prevent the upregulation of T-bet, the master Th1 transcription factor, on activated CD4+ T cells.
    CONCLUSION: The present study demonstrates that transfer of MSC mitochondria to activated CD4+ T cells results in the suppression of Th1 responses in part by downregulating T-bet expression. Furthermore, our studies suggest that MSC mitochondrial transfer might represent a general mechanism of MSC-dependent immunosuppression.
    Keywords:  Autoimmunity; CD4+ T cells; Immunotherapy; Mesenchymal stem/stromal cells; Mitochondrial transfer
    DOI:  https://doi.org/10.1186/s13287-022-03219-x
  17. Biomed Pharmacother. 2023 Jan 20. pii: S0753-3322(23)00056-2. [Epub ahead of print]159 114268
      Parkinson's disease (PD) is marked by the gradual degeneration of dopaminergic neurons and the intracellular build-up of Lewy bodies rich in α-synuclein protein. This impairs various aspects of the mitochondria including the generation of ROS, biogenesis, dynamics, mitophagy etc. Mitochondrial dynamics are regulated through the inter and intracellular movement which impairs mitochondrial trafficking within and between cells. This inter and intracellular mitochondrial movement plays a significant role in maintaining neuronal dynamics in terms of energy and growth. Kinesin, dynein, myosin, Mitochondrial rho GTPase (Miro), and TRAK facilitate the retrograde and anterograde movement of mitochondria. Enzymes such as Kinases along with Calcium (Ca2+), Adenosine triphosphate (ATP) and the genes PINK1 and Parkin are also involved. Extracellular vesicles, gap junctions, and tunneling nanotubes control intercellular movement. The knowledge and understanding of these proteins, enzymes, molecules, and movements have led to the development of mitochondrial transplant as a therapeutic approach for various disorders involving mitochondrial dysfunction such as stroke, ischemia and PD. A better understanding of these pathways plays a crucial role in establishing extracellular mitochondrial transplant therapy for reverting the pathology of PD. Currently, techniques such as mitochondrial coculture, mitopunch and mitoception are being utilized in the pre-clinical stages and should be further explored for translational value. This review highlights how intercellular and intracellular mitochondrial dynamics are affected during mitochondrial dysfunction in PD. The field of mitochondrial transplant therapy in PD is underlined in particular due to recent developments and the potential that it holds in the near future.
    Keywords:  Future therapies; Mitochondria: mitophagy; Mitochondrial dysfunction: mitochondrial transplant; Parkinson’s Disease
    DOI:  https://doi.org/10.1016/j.biopha.2023.114268
  18. Mov Disord. 2023 Jan 25.
      BACKGROUND: Sporadic adult-onset ataxias without known genetic or acquired cause are subdivided into multiple system atrophy of cerebellar type (MSA-C) and sporadic adult-onset ataxia of unknown etiology (SAOA).OBJECTIVES: To study the differential evolution of both conditions including plasma neurofilament light chain (NfL) levels and magnetic resonance imaging (MRI) markers.
    METHODS: SPORTAX is a prospective registry of sporadic ataxia patients with an onset >40 years. Scale for the Assessment and Rating of Ataxia was the primary outcome measure. In subgroups, blood samples were taken and MRIs performed. Plasma NfL was measured via a single molecule assay. Regional brain volumes were automatically measured. To assess signal changes, we defined the pons and middle cerebellar peduncle abnormality score (PMAS). Using mixed-effects models, we analyzed changes on a time scale starting with ataxia onset.
    RESULTS: Of 404 patients without genetic diagnosis, 130 met criteria of probable MSA-C at baseline and 26 during follow-up suggesting clinical conversion to MSA-C. The remaining 248 were classified as SAOA. At baseline, NfL, cerebellar white matter (CWM) and pons volume, and PMAS separated MSA-C from SAOA. NfL decreased in MSA-C and did not change in SAOA. CWM and pons volume decreased faster, whereas PMAS increased faster in MSA-C. In MSA-C, pons volume had highest sensitivity to change, and PMAS was a predictor of faster progression. Fulfillment of possible MSA criteria, NfL and PMAS were risk factors, CWM and pons volume protective factors for conversion to MSA-C.
    CONCLUSIONS: This study provides detailed information on differential evolution and prognostic relevance of biomarkers in MSA-C and SAOA. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
    Keywords:  multiple system atrophy; natural history; neurofilament light chain; sporadic ataxia; volumetric MRI
    DOI:  https://doi.org/10.1002/mds.29324