bims-mitmed Biomed News
on Mitochondrial medicine
Issue of 2022‒05‒01
29 papers selected by
Dario Brunetti
Fondazione IRCCS Istituto Neurologico


  1. Cell. 2022 Apr 18. pii: S0092-8674(22)00389-0. [Epub ahead of print]
      Mitochondrial DNA (mtDNA) editing paves the way for disease modeling of mitochondrial genetic disorders in cell lines and animals and also for the treatment of these diseases in the future. Bacterial cytidine deaminase DddA-derived cytosine base editors (DdCBEs) enabling mtDNA editing, however, are largely limited to C-to-T conversions in the 5'-TC context (e.g., TC-to-TT conversions), suitable for generating merely 1/8 of all possible transition (purine-to-purine and pyrimidine-to-pyrimidine) mutations. Here, we present transcription-activator-like effector (TALE)-linked deaminases (TALEDs), composed of custom-designed TALE DNA-binding arrays, a catalytically impaired, full-length DddA variant or split DddA originated from Burkholderia cenocepacia, and an engineered deoxyadenosine deaminase derived from the E. coli TadA protein, which induce targeted A-to-G editing in human mitochondria. Custom-designed TALEDs were highly efficient in human cells, catalyzing A-to-G conversions at a total of 17 target sites in various mitochondrial genes with editing frequencies of up to 49%.
    Keywords:  DNA; DddAtox; TALED; adenine deaminase; base editing; genome editing; mitochondria; organelle
    DOI:  https://doi.org/10.1016/j.cell.2022.03.039
  2. Proc Natl Acad Sci U S A. 2022 May 03. 119(18): e2200549119
      SignificancePrimary mitochondrial diseases (PMDs) are the most prevalent inborn metabolic disorders, affecting an estimated 1 in 4,200 individuals. Endurance exercise is generally known to improve mitochondrial function, but its indication in the heterogeneous group of PMDs is unclear. We determined the relationship between mitochondrial mutations, endurance exercise response, and the underlying molecular pathways in mice with distinct mitochondrial mutations. This revealed that mitochondria are crucial regulators of exercise capacity and exercise response. Endurance exercise proved to be mostly beneficial across the different mitochondrial mutant mice with the exception of a worsened dilated cardiomyopathy in ANT1-deficient mice. Thus, therapeutic exercises, especially in patients with PMDs, should take into account the physical and mitochondrial genetic status of the patient.
    Keywords:  endurance exercise; mitochondrial disease; skeletal muscle adaption
    DOI:  https://doi.org/10.1073/pnas.2200549119
  3. Cell Rep Methods. 2021 May 24. 1(1): 100002
      Mitochondria sustain the energy demand of the cell. The composition and functional state of the mitochondrial oxidative phosphorylation system are informative indicators of organelle bioenergetic capacity. Here, we describe a highly sensitive and reproducible method for a single-cell quantification of mitochondrial CI- and CIV-containing respiratory supercomplexes (CI∗CIV-SCs) as an alternative means of assessing mitochondrial respiratory chain integrity. We apply a proximity ligation assay (PLA) and stain CI∗CIV-SCs in fixed human and mouse brains, tumorigenic cells, induced pluripotent stem cells (iPSCs) and iPSC-derived neural precursor cells (NPCs), and neurons. Spatial visualization of CI∗CIV-SCs enables the detection of mitochondrial lesions in various experimental models, including complex tissues undergoing degenerative processes. We report that comparative assessments of CI∗CIV-SCs facilitate the quantitative profiling of even subtle mitochondrial variations by overcoming the confounding effects that mixed cell populations have on other measurements. Together, our PLA-based analysis of CI∗CIV-SCs is a sensitive and complementary technique for detecting cell-type-specific mitochondrial perturbations in fixed materials.
    Keywords:  brain; in-situ imaging analysis; mitochondria; mitochondrial diseases; mitochondrial dysfunction; mitochondrial respiratory supercomplexes; proximity ligation assay
    DOI:  https://doi.org/10.1016/j.crmeth.2021.100002
  4. Nat Chem Biol. 2022 May;18(5): 461-469
      Metabolites once considered solely in catabolism or anabolism turn out to have key regulatory functions. Among these, the citric acid cycle intermediate succinate stands out owing to its multiple roles in disparate pathways, its dramatic concentration changes and its selective cell release. Here we propose that succinate has evolved as a signaling modality because its concentration reflects the coenzyme Q (CoQ) pool redox state, a central redox couple confined to the mitochondrial inner membrane. This connection is of general importance because CoQ redox state integrates three bioenergetic parameters: mitochondrial electron supply, oxygen tension and ATP demand. Succinate, by equilibrating with the CoQ pool, enables the status of this central bioenergetic parameter to be communicated from mitochondria to the rest of the cell, into the circulation and to other cells. The logic of this form of regulation explains many emerging roles of succinate in biology, and suggests future research questions.
    DOI:  https://doi.org/10.1038/s41589-022-01004-8
  5. Acta Neuropathol. 2022 Apr 30.
      Frontotemporal lobar degeneration (FTLD) is a common cause of young onset dementia and is characterised by focal neuropathology. The reasons for the regional neuronal vulnerability are not known. Mitochondrial mechanisms have been implicated in the pathogenesis of FTLD, raising the possibility that frontotemporal regional mutations of mitochondrial DNA (mtDNA) are contributory causes. Here we applied dual sequencing of the entire mtDNA at high depth to identify high-fidelity single nucleotide variants (mtSNVs) and mtDNA rearrangements in post mortem brain tissue of people affected by FTLD and age-matched controls. Both mtSNVs and mtDNA rearrangements were elevated in the temporal lobe, with the greatest burden seen in FTLD. mtSNVs found in multiple brain regions also reached a higher heteroplasmy levels in the temporal lobe. The temporal lobe of people with FTLD had a higher burden of ribosomal gene variants predicted to affect intra-mitochondrial protein synthesis, and a higher proportion of missense variants in genes coding for respiratory chain subunits. In conclusion, heteroplasmic mtDNA variants predicted to affect oxidative phosphorylation are enriched in FTLD temporal lobe, and thus may contribute to the regional vulnerability in pathogenesis.
    DOI:  https://doi.org/10.1007/s00401-022-02423-6
  6. Physiol Rev. 2022 Apr 25.
      As a central hub for cellular metabolism and intracellular signalling, the mitochondrion is a pivotal organelle, dysfunction of which has been linked to several human diseases including neurodegenerative disorders, and in particular Parkinson's disease. An inherent challenge that mitochondria face is the continuous exposure to diverse stresses which increase their likelihood of dysregulation. In response, eukaryotic cells have evolved sophisticated quality control mechanisms to monitor, identify, repair and/or eliminate abnormal or misfolded proteins within the mitochondrion and/or the dysfunctional mitochondrion itself. Chaperones identify unstable or otherwise abnormal conformations in mitochondrial proteins and can promote their refolding to recover their correct conformation and stability. However, if repair is not possible, the abnormal protein is selectively degraded to prevent potentially damaging interactions with other proteins or its oligomerization into toxic multimeric complexes. The autophagic-lysosomal system and the ubiquitin-proteasome system mediate the selective and targeted degradation of such abnormal or misfolded protein species. Mitophagy (a specific kind of autophagy) mediates the selective elimination of dysfunctional mitochondria, in order to prevent the deleterious effects the dysfunctional organelles within the cell. Despite our increasing understanding of the molecular responses toward dysfunctional mitochondria, many key aspects remain relatively poorly understood. Herein, we review the emerging mechanisms of mitochondrial quality control including quality control strategies coupled to mitochondrial import mechanisms. In addition, we review the molecular mechanisms regulating mitophagy with an emphasis on the regulation of PINK1/PARKIN-mediated mitophagy in cellular physiology and in the context of Parkinson's disease cell biology.
    Keywords:  PINK1/Parkin; Parkinson's disease; mitochondrial quality control; mitophagy; protein quality control
    DOI:  https://doi.org/10.1152/physrev.00041.2021
  7. STAR Protoc. 2022 Jun 17. 3(2): 101322
      Mitochondrial respiratory chain (MRC) dysfunction is linked to mitochondrial disease as well as other common conditions such as diabetes, neurodegeneration, cancer, and aging. Thus, the evaluation of MRC enzymatic activities is fundamental for diagnostics and research purposes on experimental models. Here, we provide a verified and reliable protocol for mitochondria isolation from various D. melanogaster samples and subsequent measurement of the activity of MRC complexes I-V plus citrate synthase (CS) through UV-VIS spectrophotometry. For complete details on the use and execution of this protocol, please refer to Brischigliaro et al. (2021).
    Keywords:  Cell separation/fractionation; Metabolism; Model Organisms; Protein Biochemistry
    DOI:  https://doi.org/10.1016/j.xpro.2022.101322
  8. Neurol Int. 2022 Apr 02. 14(2): 337-356
      Ataxia is increasingly being recognized as a cardinal manifestation in primary mitochondrial diseases (PMDs) in both paediatric and adult patients. It can be caused by disruption of cerebellar nuclei or fibres, its connection with the brainstem, or spinal and peripheral lesions leading to proprioceptive loss. Despite mitochondrial ataxias having no specific defining features, they should be included in hereditary ataxias differential diagnosis, given the high prevalence of PMDs. This review focuses on the clinical and neuropathological features and genetic background of PMDs in which ataxia is a prominent manifestation.
    Keywords:  Kearns-Sayre syndrome; MERRF; NARP; POLG1-related ataxia; ataxia; mitochondrial diseases
    DOI:  https://doi.org/10.3390/neurolint14020028
  9. Nat Immunol. 2022 Apr 28.
      The NLRP3 inflammasome is linked to sterile and pathogen-dependent inflammation, and its dysregulation underlies many chronic diseases. Mitochondria have been implicated as regulators of the NLRP3 inflammasome through several mechanisms including generation of mitochondrial reactive oxygen species (ROS). Here, we report that mitochondrial electron transport chain (ETC) complex I, II, III and V inhibitors all prevent NLRP3 inflammasome activation. Ectopic expression of Saccharomyces cerevisiae NADH dehydrogenase (NDI1) or Ciona intestinalis alternative oxidase, which can complement the functional loss of mitochondrial complex I or III, respectively, without generation of ROS, rescued NLRP3 inflammasome activation in the absence of endogenous mitochondrial complex I or complex III function. Metabolomics revealed phosphocreatine (PCr), which can sustain ATP levels, as a common metabolite that is diminished by mitochondrial ETC inhibitors. PCr depletion decreased ATP levels and NLRP3 inflammasome activation. Thus, the mitochondrial ETC sustains NLRP3 inflammasome activation through PCr-dependent generation of ATP, but via a ROS-independent mechanism.
    DOI:  https://doi.org/10.1038/s41590-022-01185-3
  10. Pharmacol Res. 2022 Apr 21. pii: S1043-6618(22)00173-6. [Epub ahead of print] 106228
      A mitochondrial stroke-like event is an evolving subacute neurological syndrome linked to seizure activity and focal metabolic brain derangement in a genetically determined mitochondrial disorder. The acronym "MELAS" (mitochondrial encephalopathy associated with lactic acidosis and stroke-like lesions) identifies subjects with molecular, biochemical and/or histological evidence of mitochondrial disorder who experience stroke-like lesions. MELAS is a rare inherited mitochondrial disease linked to severe multiorgan involvement and stress-induced episodes of metabolic decompensation and lactic acidosis. Unfortunately, there are no etiopathogenetic therapies for stroke-like episodes to date, and the treatment is mainly based on anti-epileptic drugs and supportive therapies. This perspective opinion article discusses the current care standards for MELAS patients and revises current and innovative emerging therapies for mitochondrial stroke-like episodes.
    Keywords:  MELAS; MTTL1; POLG; m.3243A>G; stroke; stroke-like episodes; stroke-like lesion
    DOI:  https://doi.org/10.1016/j.phrs.2022.106228
  11. Hum Mol Genet. 2022 Apr 25. pii: ddac096. [Epub ahead of print]
      Sensorineural hearing loss often results from damaged or deficient inner ear hair cells. Mitochondrial 12S rRNA 1555A > G mutation has been associated with hearing loss in many families. The m.1555A > G mutation is a primary factor underlying the development of hearing loss and TRMU allele (c.28G > T, p.Ala10Sser) encoding tRNA methyltransferase interact with m.1555A > G mutation to cause hearing loss. However, the tissue specificity of mitochondrial dysfunction remains elusive and there is no highly effective therapy for mitochondrial deafness. We report here the generation of induced pluripotent stem cells (iPSCs) from lymphoblastoid cell lines derived from members of an Arab-Israeli family (asymptomatic individual carrying only m.1555A > G mutation, symptomatic individual bearing both m.1555A > G and c.28G > T mutations, and control subject). The c.28G > T mutation in iPSC lines from a hearing-impaired subject was corrected by CRISPR/Cas9. These iPSCs were differentiated into otic epithelial progenitor (OEP) cells and subsequent inner ear hair cell (HC)-like cells. The iPSCs bearing m.1555A > G mutation exhibited mildly deficient differentiation into OEP and resultant HC-like cells displayed mild defects in morphology and electrophysiological properties. Strikingly, those HC-like cells harboring m.1555A > G and TRMU c.28G > T mutations displayed greater defects in the development, morphology and functions than those in cells bearing only m.1555A > G mutation. Transcriptome analysis of patients-derived HC-like cells revealed altered expressions of genes vital for mechanotransduction of hair cells. Genetic correction of TRMU c.28G > T mutation yielded morphologic and functional recovery of patient derived HC-like cells. These findings provide new insights into pathophysiology of maternally inherited hearing loss and a step toward therapeutic interventions for this disease.
    Keywords:  hearing loss12S rRNA mutationinner ear hair cellsinduced pluripotent stem cellsmitochondrial dysfunction
    DOI:  https://doi.org/10.1093/hmg/ddac096
  12. EMBO J. 2022 Apr 25. e111290
      The ability of immune cells to penetrate affected tissues is highly dependent on energy provided by mitochondria, yet their involvement in promoting migration remains unclear. Recent work by Emtenani et al (2022) describes a nuclear Atossa-Porthos axis that adjusts transcription and translation of a small subset of OXPHOS genes to increase mitochondrial bioenergetics and allow macrophage tissue invasion in flies.
    DOI:  https://doi.org/10.15252/embj.2022111290
  13. Autophagy. 2022 Apr 26.
      Mitostasis, the process of mitochondrial maintenance by biogenesis and degradative mechanisms, is challenged by the extreme length of axons. PINK1 (PTEN induced putative kinase 1) is a mitochondrial protein that targets damaged mitochondria for mitophagy. In reconciling the short half-life of PINK1 with the need for mitophagy of damaged axonal mitochondria, we found that axonal mitophagy depends on local translation of the Pink1 mRNA. Using live-cell imaging, we detected co-transport of the Pink1 mRNA on mitochondria in neurons, which is crucial for mitophagy in distal parts of the cell. Here we discuss how the coupling of the transcript of a short-lived mitochondrial protein to the movement of its target organelles contributes to our understanding of mitostasis in neurons.
    Keywords:  Axonal biology; RNA transport; local translation; mitochondria; mitophagy
    DOI:  https://doi.org/10.1080/15548627.2022.2070332
  14. J Biol Chem. 2022 Apr 23. pii: S0021-9258(22)00422-7. [Epub ahead of print] 101982
      Friedreich's Ataxia (FRDA) is a degenerative disease caused by a decrease in the mitochondrial protein frataxin, which is involved in iron-sulfur cluster (ISC) synthesis. Diminutions in frataxin result in decreased ISC synthesis, increased mitochondrial iron accumulation, and impaired mitochondrial function. Here we show that conditions that result in increased mitochondrial reactive oxygen species (ROS) in yeast or mammalian cell culture give rise to increased turnover of frataxin, but not of other ISC synthesis proteins. We demonstrate that the mitochondrial Lon protease is involved in frataxin degradation and that iron export through the mitochondrial metal transporter Mmt1 protects yeast frataxin from degradation. We also determined that when FRDA fibroblasts were grown in media containing elevated iron, mitochondrial ROS increased and frataxin decreased compared to WT fibroblasts. Furthermore, we screened a library of FDA-approved compounds and identified 38 compounds that increased yeast frataxin levels, including the azole Bifonazole, antiparasitic Fipronil, anti-tumor compound Dibenzoylmethane (DBM), antihypertensive 4-hydroxychalcone (4'-OHC), and a non-specific anion channel inhibitor 4,4-diisothiocyanostilbene-2,2-sulfonic acid (DIDS). We show that top hits 4'-OHC and DBM increased mRNA levels of transcription factor Nrf2 in FRDA patient-derived fibroblasts, as well as downstream antioxidant targets thioredoxin (TXN), glutathione reductase (GSR), and superoxide dismutase 2 (SOD2). Taken together, these findings reveal that FRDA progression may be in part due to oxidant-mediated decreases in frataxin, and that some approved compounds may be effective in increasing mitochondrial frataxin in FRDA, delaying disease progression.
    Keywords:  ROS; Yfh1; compounds; frataxin; iron; iron-sulfur clusters; mitochondria; screen; yeast
    DOI:  https://doi.org/10.1016/j.jbc.2022.101982
  15. Mol Genet Genomic Med. 2022 Apr 26. e1955
      BACKGROUND: Mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes (MELAS) syndrome is one of the most well-known mitochondrial diseases, with most cases attributed to m.3243A>G. MELAS syndrome patients typically present in the first two decades of life with a broad, multi-systemic phenotype that predominantly features neurological manifestations--stroke-like episodes. However, marked phenotypic variability has been observed among paediatric patients, creating a clinical challenge and delaying diagnoses.METHODS: A literature review of paediatric MELAS syndrome patients and a retrospective analysis in a UK tertiary paediatric neurology centre were performed.
    RESULTS: Three children were included in this case series. All patients presented with seizures and had MRI changes not confined to a single vascular territory. Blood heteroplasmy varied considerably, and one patient required a muscle biopsy. Based on a literature review of 114 patients, the mean age of presentation is 8.1 years and seizures are the most prevalent manifestation of stroke-like episodes. Heteroplasmy is higher in a tissue other than blood in most cases.
    CONCLUSION: The threshold for investigating MELAS syndrome in children with suspicious neurological symptoms should be low. If blood m.3243A>G analysis is negative, yet clinical suspicion remains high, invasive testing or further interrogation of the mitochondrial genome should be considered.
    Keywords:  MELAS syndrome; encephalopathy; genetics; lactic acidosis; m.3243A>G; mitochondrial disease; paediatric neurology; stroke-like episodes
    DOI:  https://doi.org/10.1002/mgg3.1955
  16. Nat Commun. 2022 Apr 29. 13(1): 2340
      The dynamin-like GTPases Mitofusin 1 and 2 (Mfn1 and Mfn2) are essential for mitochondrial function, which has been principally attributed to their regulation of fission/fusion dynamics. Here, we report that Mfn1 and 2 are critical for glucose-stimulated insulin secretion (GSIS) primarily through control of mitochondrial DNA (mtDNA) content. Whereas Mfn1 and Mfn2 individually were dispensable for glucose homeostasis, combined Mfn1/2 deletion in β-cells reduced mtDNA content, impaired mitochondrial morphology and networking, and decreased respiratory function, ultimately resulting in severe glucose intolerance. Importantly, gene dosage studies unexpectedly revealed that Mfn1/2 control of glucose homeostasis was dependent on maintenance of mtDNA content, rather than mitochondrial structure. Mfn1/2 maintain mtDNA content by regulating the expression of the crucial mitochondrial transcription factor Tfam, as Tfam overexpression ameliorated the reduction in mtDNA content and GSIS in Mfn1/2-deficient β-cells. Thus, the primary physiologic role of Mfn1 and 2 in β-cells is coupled to the preservation of mtDNA content rather than mitochondrial architecture, and Mfn1 and 2 may be promising targets to overcome mitochondrial dysfunction and restore glucose control in diabetes.
    DOI:  https://doi.org/10.1038/s41467-022-29945-7
  17. Hum Mutat. 2022 Apr 23.
      Most of the pathogenic variants in mitochondrial DNA (mtDNA) exist in a heteroplasmic state (coexistence of mutant and wild-type mtDNA). Understanding how mtDNA is transmitted is crucial for predicting mitochondrial disease risk. Previous studies were based mainly on two-generation pedigree data, which are limited by the randomness in a single transmission. In this study, we analyzed the transmission of heteroplasmies in 16 four-generation families. First, we found that 57.8% of the variants in the great grandmother were transmitted to the fourth generation. The direction and magnitude of the frequency change during transmission appeared to be random. Moreover, no consistent correlation was identified between the frequency changes among the continuous transmissions, suggesting that most variants were functionally neutral or mildly deleterious and thus not subject to strong natural selection. Additionally, we found that the frequency of one nonsynonymous variant (m.15773G>A) showed a consistent increase in one family, suggesting that this variant may confer a fitness advantage to the mitochondrion/cell. We also estimated the effective bottleneck size during transmission to be 21-71. In summary, our study demonstrates the advantages of multigeneration data for studying the transmission of mtDNA for shedding new light on the dynamics of the mutation frequency in successive generations. This article is protected by copyright. All rights reserved.
    Keywords:  heteroplasmy; inheritance; mtDNA; multigeneration pedigrees; transmission
    DOI:  https://doi.org/10.1002/humu.24390
  18. Sci Rep. 2022 Apr 27. 12(1): 6890
      2-Deoxy-D-glucose (2DG) has recently received emergency approval for the treatment of COVID-19 in India, after a successful clinical trial. SARS-CoV-2 infection of cultured cells is accompanied by elevated glycolysis and decreased mitochondrial function, whereas 2DG represses glycolysis and stimulates respiration, and restricts viral replication. While 2DG has pleiotropic effects on cell metabolism in cultured cells it is not known which of these manifests in vivo. On the other hand, it is known that 2DG given continuously can have severe detrimental effects on the rodent heart. Here, we show that the principal effect of an extended, intermittent 2DG treatment on mice is to augment the mitochondrial respiratory chain proteome in the heart; importantly, this occurs without vacuolization, hypertrophy or fibrosis. The increase in the heart respiratory chain proteome suggests an increase in mitochondrial oxidative capacity, which could compensate for the energy deficit caused by the inhibition of glycolysis. Thus, 2DG in the murine heart appears to induce a metabolic configuration that is the opposite of SARS-CoV-2 infected cells, which could explain the compound's ability to restrict the propagation of the virus to the benefit of patients with COVID-19 disease.
    DOI:  https://doi.org/10.1038/s41598-022-10168-1
  19. Front Mol Neurosci. 2022 ;15 841047
      Defective mitochondrial dynamics in axons have been linked to both developmental and late-onset neurological disorders. Axonal trafficking is in large part governed by the microtubule motors kinesin-1 and cytoplasmic dynein 1 (dynein). Dynein is the primary retrograde transport motor in axons, and mutations in dynein and many of its regulators also cause neurological diseases. Depletion of LIS1, famous for linking dynein deregulation to lissencephaly (smooth brain), in adult mice leads to severe neurological phenotypes, demonstrating post-developmental roles. LIS1 stimulates retrograde transport of acidic organelles in cultured adult rat dorsal root ganglion (DRG) axons but findings on its role in mitochondrial trafficking have been inconsistent and have not been reported for adult axons. Here we report that there is an increased number of mitochondria in cross-sections of sciatic nerve axons from adult LIS1+/- mice. This is probably related to reduced dynein activity as axons from adult rat nerves exposed to the dynein inhibitor, ciliobrevin D also had increased numbers of mitochondria. Moreover, LIS1 overexpression (OE) in cultured adult rat DRG axons stimulated retrograde mitochondrial transport while LIS1 knockdown (KD) or expression of a LIS1 dynein-binding mutant (LIS1-K147A) inhibited retrograde transport, as did KD of dynein heavy chain (DHC). These findings are consistent with our report on acidic organelles. However, KD of NDEL1, a LIS1 and dynein binding protein, or expression of a LIS1 NDEL1-binding mutant (LIS1-R212A) also dramatically impacted retrograde mitochondrial transport, which was not the case for acidic organelles. Manipulations that disrupted retrograde mitochondrial transport also increased the average length of axonal mitochondria, suggesting a role for dynein in fusion or fission events. Our data point to cargo specificity in NDEL1 function and raise the possibility that defects in the LIS1/NDEL1 dynein regulatory pathway could contribute to mitochondrial diseases with axonal pathologies.
    Keywords:  DRG; LIS1; NDEL1; axon; dynein; mitochondria; sciatic nerve
    DOI:  https://doi.org/10.3389/fnmol.2022.841047
  20. Elife. 2022 Apr 25. pii: e75143. [Epub ahead of print]11
      How environmental cues influence peroxisome proliferation, particularly through organelles, remains largely unknown. Yeast peroxisomes metabolize fatty acids (FA), and methylotrophic yeasts also metabolize methanol. NADH and acetyl-CoA, produced by these pathways enter mitochondria for ATP production and for anabolic reactions. During the metabolism of FA and/or methanol, the mitochondrial oxidative phosphorylation (OXPHOS) pathway accepts NADH for ATP production and maintains cellular redox balance. Remarkably, peroxisome proliferation in Pichia pastoris was abolished in NADH shuttling- and OXPHOS mutants affecting complex I or III, or by the mitochondrial uncoupler, 2,4-dinitrophenol (DNP), indicating ATP depletion causes the phenotype. We show that mitochondrial OXPHOS deficiency inhibits expression of several peroxisomal proteins implicated in FA and methanol metabolism, as well as in peroxisome division and proliferation. These genes are regulated by the Snf1 complex (SNF1), a pathway generally activated by a high AMP/ATP ratio. In OXPHOS mutants, Snf1 is activated by phosphorylation, but Gal83, its interacting subunit, fails to translocate to the nucleus. Phenotypic defects in peroxisome proliferation observed in the OXPHOS mutants, and phenocopied by the Dgal83 mutant, were rescued by deletion of three transcriptional repressor genes (MIG1, MIG2 and NRG1) controlled by SNF1 signaling. Our results are interpreted in terms of a mechanism by which peroxisomal and mitochondrial proteins and/or metabolites influence redox and energy metabolism, while also influencing peroxisome biogenesis and proliferation, thereby exemplifying interorganellar communication and interplay involving peroxisomes, mitochondria, cytosol and the nucleus. We discuss the physiological relevance of this work in the context of human OXPHOS deficiencies.
    Keywords:  cell biology
    DOI:  https://doi.org/10.7554/eLife.75143
  21. Life Sci. 2022 Apr 22. pii: S0024-3205(22)00271-5. [Epub ahead of print] 120571
      Mitochondrial complex I (CI), the first multiprotein enzyme complex of the oxidative phosphorylation system, plays a crucial role in cellular energy production. CI deficiency is associated with a variety of clinical phenotypes, including Leigh syndrome. At the cellular level, an increased NAD(P)H concentration is one of the hallmarks in CI-deficiency.AIMS: Here, we aimed to attenuate increased NAD(P)H levels by stimulation of ATP-dependent cassette (ABC)A1 and ABCG1-mediated cellular cholesterol efflux with various PPARα and LXRα agonists.
    MAIN METHODS: Mitochondrial CI-deficient fibroblasts and chemically-induced CI-deficient HeLa cells were used to study the dose-dependent effects of various PPARα and LXRα on cellular NAD(P)H levels and cholesterol efflux.
    KEY FINDINGS: In patient-derived mitochondrial CI-deficient fibroblasts, GW590735, astaxanthin, oleoylethanolamide, and GW3965 significantly reduced the enhanced NAD(P)H levels in CI-deficient fibroblasts. Similar effects were observed in chemically-induced CI-impaired HeLa cells, in which BMS-687453, Wy14643, GW7647, T0901317, DMHCA also demonstrated a beneficial effect. Surprisingly, no effect on ABCA1- and ABCG1-mediated cholesterol efflux in HeLa cells and fibroblasts was found after treatment with these compounds. The reduction in NAD(P)H levels by GW590735 could be partially reversed by inhibition of fatty acid synthase and β-oxidation, which suggests that its beneficial effects are possibly mediated via stimulation of fatty acid metabolism rather than cholesterol efflux.
    SIGNIFICANCE: Collectively, PPARα and LXRα stimulation resulted in attenuated cellular NAD(P)H levels in CI-impaired HeLa cells and patient-derived fibroblasts and could eventually have a therapeutic potential in CI deficiency.
    Keywords:  Liver X receptor α; Mitochondrial complex I deficiency; Nicotinamide adenine dinucleotide (phosphate); Peroxisome proliferator activated receptor α; Redox state
    DOI:  https://doi.org/10.1016/j.lfs.2022.120571
  22. J Neuroophthalmol. 2022 Apr 27.
      BACKGROUND: Leber hereditary optic neuropathy (LHON) is an inherited mitochondrial disease characterized by severe bilateral vision loss and chronic visual impairment. The objective of this study was to comprehensively explore the impact of LHON on the lives of patients and their relatives at the time of diagnosis and now.METHODS: Qualitative study design with 8 focus group interviews conducted in France, Germany, the United Kingdom, and the United States, involving 17 individuals with m.11778G>A mutation and their relatives. Separate focus groups for patients and their relatives were facilitated by a moderator in French, German, or English. Qualitative analysis of interviews using a pre-defined analytical framework.
    RESULTS: Participants reported feeling devastated by the diagnosis of LHON after a lengthy and worrisome diagnostic journey. Patients were frustrated by the loss of autonomy, which also affected their relatives. Participants described challenges across several domains: physical capabilities, emotional well-being, interpersonal relationships, work and studies, finances, and recreational activities. Access to disability allowances, vision aids, and funded or subsided idebenone varied by country, resulting in unequal financial impact. Patients are hopeful for therapy that would restore autonomy and improve their ability to enjoy a fulfilling life, while alleviating the demands placed on their relatives.
    CONCLUSIONS: The impact of LHON extends beyond vision-related activity limitations. Addressing the psychosocial impact of LHON and helping patients and their relatives adapt and cope with vision loss are vital. As part of this, an accurate and timely diagnosis is important to enable early intervention. Further investigation of specific unmet needs is required.
    DOI:  https://doi.org/10.1097/WNO.0000000000001564
  23. J Neurol. 2022 Apr 29.
      BACKGROUND: There is increasing evidence for the role of inflammation in the pathogenesis of mitochondrial diseases (MDs). However, the mechanisms underlying mutation-induced inflammation in MD remain elusive. Our previous study suggested that mitophagy is impaired in the skeletal muscle of those with MD, likely causing mitochondrial DNA (mtDNA) release and thereby triggering inflammation. We here aimed to decipher the role of the cGAS-STING pathway in inflammatory process in MDs.METHODS: We investigated the levels of circulating cell-free mtDNA (ccf-mtDNA) in the serum of 104 patients with MDs. Immunofluorescence was performed in skeletal muscles in MDs and control. Biochemical analysis of muscle biopsies was conducted with western blot to detect cGAS, STING, TBK1, IRF3 and phosphorylated IRF3 (p-IRF3). RT-qPCR was performed to detect the downstream genes of type I interferon in skeletal muscles. Furthermore, a protein microarray was used to examine the cytokine levels in the serum of patients with MDs.
    RESULTS: We found that ccf-mtDNA levels were significantly increased in those with MDs compared to the controls. Consistently, the immunofluorescent results showed that cytosolic dsDNA levels were increased in the muscle samples of MD patients. Biochemical analysis of muscle biopsies showed that cGAS, IRF3, and TBK1 protein levels were significantly increased in those with MDs, indicating that there was activation of the cGAS-STING pathway. RT-qPCR showed that downstream genes of type I interferon were upregulated in muscle samples of MDs. Protein microarray results showed that a total of six cytokines associated with the cGAS-STING pathway were significantly increased in MD patients (fold change > 1.2, p value < 0.05).
    CONCLUSIONS: These findings suggest that increases in ccf-mtDNA levels is associated with the activation of the cGAS-STING pathway, thereby triggering inflammation in MDs.
    Keywords:  Ccf-mtDNA; Inflammation; Mitochondrial diseases; cGAS-STING pathway
    DOI:  https://doi.org/10.1007/s00415-022-11146-3
  24. Front Psychiatry. 2022 ;13 864445
      Background: Mitochondrial disorders (MD) are metabolic diseases related to genetic mutations in mitochondrial DNA and nuclear DNA that cause dysfunction of the mitochondrial respiratory chain. Cognitive impairment and psychiatric symptoms are frequently associated with MD in the adult population. The aim of this study is to describe the neuropsychological profile in children and adolescents with MD.Methods: We prospectively recruited a sample of 12 children and adolescents between February 2019 and February 2020 in the Reference Center for Mitochondrial Disorders of Angers (France). Participants and their parents completed an anamnestic form describing socio-demographic data and completed the WISC-V (Wechsler Intelligence Scale for Children, 5th edition) and the Parent and Teacher forms of the BRIEF (Behavior Rating Inventory of Executive Function).
    Results: In our sample, the mean IQ (Intellectual Quotient) score was 87.3 ± 25.3. The score ranged from 52 to 120. Concerning executive functions, a significant global clinical complaint was found for parents (six times more than normal) and to a lesser extent, for teachers (among 3 to 4 times more). Levels of intelligence and executive functioning were globally linked in our cohort but dissociation remains a possibility.
    Conclusion: The results of this study show that MD can be associated to neuropsychological disorders in children and adolescents, especially regarding the intelligence quotient and the executive function. Our study also highlights the need for regular neuropsychological assessments in individuals with MD and developing brains, such as children and adolescents.
    Keywords:  adolescent; child; executive function; intelligence; mitochondrial disorders; neuropsychological profile
    DOI:  https://doi.org/10.3389/fpsyt.2022.864445
  25. Eur J Neurosci. 2022 Apr 28.
      Mitochondria is an autonomous organelle that plays a crucial role in the metabolic aspects of a cell. Cortical Spreading Depression (CSD) and fluctuations in the cerebral blood flow have for long been mechanisms underlying migraine. It is a neurovascular disorder with a unilateral manifestation of disturbing, throbbing and pulsating head pain. Migraine affects 2.6 and 21.7% of the general population and is the major cause of partial disability in the age group 15-49. Higher mutation rates, imbalance in concentration of physiologically relevant molecules, oxidative stress biomarkers have been the main themes of discussion in determining the role of mitochondrial disability in migraine. The correlation of migraine with other disorders like hemiplegic migraine, MELAS, TTH, CVS, ischemic stroke and hypertension has helped in the assessment of the physiological and morphogenetic basis of migraine. Here, we have reviewed the different nuances of mitochondrial dysfunction and migraine. The different mtDNA polymorphisms that can affect the generation and transmission of nerve impulse has been highlighted and supported with research findings. In addition to this, the genetic basis of migraine pathogenesis as a consequence of mutations in nuclear DNA that can in turn affect the synthesis of defective mitochondrial proteins is discussed along with a brief overview of epigenetic profile. This review gives an overview of the pathophysiology of migraine and explores mitochondrial dysfunction as a potential underlying mechanism. Also, therapeutic supplements for managing migraine have been discussed at different junctures in this paper.
    Keywords:  Mitochondrial dysfunction; impairment; metabolism; migraine; mitochondrial genetics
    DOI:  https://doi.org/10.1111/ejn.15676
  26. J Cell Physiol. 2022 Apr 28.
      Necroptosis, a recently described form of programmed cell death, is the main way of alveolar epithelial cells (AECs) death in acute lung injury (ALI). While the mechanism of how to trigger necroptosis in AECs during ALI has been rarely evaluated. Long optic atrophy protein 1 (L-OPA1) is a crucial mitochondrial inner membrane fusion protein, and its deficiency impairs mitochondrial function. This study aimed to investigate the role of L-OPA1 deficiency-mediated mitochondrial dysfunction in AECs necroptosis. We comprehensively investigated the detailed contribution and molecular mechanism of L-OPA1 deficiency in AECs necroptosis by inhibiting or activating L-OPA1. Firstly, our data showed that L-OPA1 expression was down-regulated in the lungs and AECs under the lipopolysaccharide (LPS) challenge. Furthermore, inhibition of L-OPA1 aggravated the pathological injury, inflammatory response, and necroptosis in the lungs of LPS-induced ALI mice. In vitro, inhibition of L-OPA1 induced necroptosis of AECs, while activation of L-OPA1 alleviated necroptosis of AECs under the LPS challenge. Mechanistically, inhibition of L-OPA1 aggravated necroptosis of AECs by inducing mitochondrial fragmentation and reducing mitochondrial membrane potential. While activation of L-OPA1 had the opposite effects. In summary, these findings indicate for the first time that L-OPA1 deficiency mediates mitochondrial fragmentation, induces necroptosis of AECs, and exacerbates ALI in mice. This article is protected by copyright. All rights reserved.
    Keywords:  L-OPA1; acute lung injury; alveolar epithelial cells; mitochondrial fragmentation; necroptosis
    DOI:  https://doi.org/10.1002/jcp.30766
  27. J Med Toxicol. 2022 Apr 28.
      INTRODUCTION: Carbon monoxide (CO) is a colorless and odorless gas that is a leading cause of environmental poisoning in the USA with substantial mortality and morbidity. The mechanism of CO poisoning is complex and includes hypoxia, inflammation, and leukocyte sequestration in brain microvessel segments leading to increased reactive oxygen species. Another important pathway is the effects of CO on the mitochondria, specifically at cytochrome c oxidase, also known as Complex IV (CIV). The purpose of this ongoing study is the preliminary development of a porcine model of CO poisoning for investigation of alterations in brain mitochondrial physiology.METHODS: Four pigs (10 kg) were divided into two groups: Sham (n = 2) and CO (n = 2). Administration of a dose of CO at 2000 ppm to the CO group over 120 minutes followed by 30 minutes of re-oxygenation at room air. The control group received room air for 150 minutes. Non-invasive optical monitoring was used to measure CIV redox states. Cerebral microdialysis was performed to obtain semi real-time measurements of cerebral metabolic status. At the end of the exposure, fresh brain tissue (cortical and hippocampal) was immediately harvested to measure mitochondrial respiration. Snap frozen cortical tissue was also used for ATP concentrations and western blotting.
    RESULTS: While a preliminary ongoing study, animals in the CO group showed possible early decreases in brain mitochondrial respiration, citrate synthase density, CIV redox changes measured with optics, and an increase in the lactate-to-pyruvate ratio.
    CONCLUSIONS: There is a possible observable phenotype highlighting the important role of mitochondrial function in the injury of CO poisoning.
    Keywords:  Basic science; Biomarker; Carbon monoxide; Mitochondria; Optics
    DOI:  https://doi.org/10.1007/s13181-022-00892-5
  28. Am J Physiol Cell Physiol. 2022 Apr 27.
      Obesity is a widespread public health problem with profound medical consequences and its burden is increasing worldwide. Obesity causes significant morbidity and mortality and is associated with conditions including cardio-vascular disease and diabetes mellitus. Conventional treatment options are insufficient, or in the case of bariatric surgery, quite invasive. The etiology of obesity is complex, but at its core is often a caloric imbalance with an inability to burn off enough calories to exceed caloric intake, resulting in storage. Interventions such as dieting often lead to decreased resting energy expenditure (REE), with a rebound in weight ('yo-yo effect' or weight cycling). Strategies that increase REE are an attractive treatment option. Brown fat tissue engages in non-shivering thermogenesis whereby mitochondrial respiration is uncoupled from ATP production, increasing REE. Medications that replicate brown fat metabolism by mitochondrial uncoupling (e.g. 2,4-dinitrophenol) effectively promote weight loss but are limited by toxicity to a narrow therapeutic range. This review explores the possibility of a new therapeutic approach to engineer autologous T cells into acquiring a thermogenic phenotype like brown fat. Engineered autologous T cells have been used successfully for years in the treatment of cancers (Chimeric Antigen Receptor T cells), and the principle of engineering T cells ex vivo and transferring them back to the patient is established. Engineering T cells to acquire a brown fat-like metabolism could increase REE without the risks of pharmacologic mitochondrial uncoupling. These thermogenic T cells may increase basal metabolic rate and are therefore a potentially novel therapeutic strategy for obesity.
    Keywords:  cell engineering; energy expenditure; mitochondrial uncoupling; thermogenesis; weight loss
    DOI:  https://doi.org/10.1152/ajpcell.00034.2022
  29. Neurol Sci. 2022 Apr 25.
      OBJECTIVE: The objective of this study is to describe the first series of spinocerebellar ataxia (SCA) in Rio de Janeiro, whose population has a high proportion of mixed Portuguese and African ancestry.METHODS: We reviewed the medical records of patients with progressive ataxia evaluated at the Sarah Network of Rehabilitation Hospitals (Rio de Janeiro). Clinical course, genetic tests for hereditary ataxia, brain MRI, and electroneuromyography were analyzed.
    RESULTS: SCA was confirmed in 128 individuals, one-third of African descendants. SCA3 predominated (83.6%), followed by SCA7 (7%); SCA2 (3.9%); SCA1, SCA6, and SCA8 (1.6% each); and SCA10 (0.8%). Dysphagia, pyramidal signs, and neurogenic bladder occurred frequently. Oculomotor disorders occurred with SCA3, SCA7, SCA2, and SCA1; peripheral neuropathies with SCA3 and SCA1; extrapyramidal syndromes with SCA3, SCA7, and SCA2; bilateral visual impairment with SCA7; and epilepsy with SCA10. Mobility assistance was required in 75% after 11 years and wheelchair in 25%. The Scale for the Assessment and Rating of Ataxia scores at the last follow-up varied from 2 to 37 (median = 14.50) and correlated positively with duration of the disease. In SCA3, a higher CAG repeats correlated with a lower age at onset. African ethnicity was associated with earlier onset, regardless of CAG repeats. The main brain MRI abnormality was cerebellar atrophy, isolated or associated with brainstem atrophy, "hot cross bun" sign, or brain atrophy. Linear T2 hyperintensity along the medial margin of the globus pallidus occurred in SCA3, SCA2, SCA1, and SCA7. ENMG confirmed peripheral neuropathy in SCA3 and SCA1.
    CONCLUSION: Machado Joseph disease/SCA3 was the most frequent inherited dominant ataxia in Rio de Janeiro. This study revealed new aspects of ethnic influence in the clinical course and new MRI findings.
    Keywords:  Machado Joseph disease; Magnetic resonance imaging; Spinocerebellar ataxias; Trinucleotide repeat expansion
    DOI:  https://doi.org/10.1007/s10072-022-06084-x