bims-mitmed Biomed News
on Mitochondrial medicine
Issue of 2022‒01‒30
thirty papers selected by
Dario Brunetti
Fondazione IRCCS Istituto Neurologico

  1. Front Cell Dev Biol. 2021 ;9 800529
      Around one third of patients with mitochondrial disorders develop a kind of cardiomyopathy. In these cases, severity is quite variable ranging from asymptomatic status to severe manifestations including heart failure, arrhythmias, and sudden cardiac death. ATP is primarily generated in the mitochondrial respiratory chain via oxidative phosphorylation by utilizing fatty acids and carbohydrates. Genes in both the nuclear and the mitochondrial DNA encode components of this metabolic route and, although mutations in these genes are extremely rare, the risk to develop cardiac symptoms is significantly higher in this patient cohort. Additionally, infants with cardiovascular compromise in mitochondrial deficiency display a worse late survival compared to patients without cardiac symptoms. At this point, the mechanisms behind cardiac disease progression related to mitochondrial gene mutations are poorly understood and current therapies are unable to substantially restore the cardiac performance and to reduce the disease burden. Therefore, new strategies are needed to uncover the pathophysiological mechanisms and to identify new therapeutic options for mitochondrial cardiomyopathies. Here, human induced pluripotent stem cell (iPSC) technology has emerged to provide a suitable patient-specific model system by recapitulating major characteristics of the disease in vitro, as well as to offer a powerful platform for pre-clinical drug development and for the testing of novel therapeutic options. In the present review, we summarize recent advances in iPSC-based disease modeling of mitochondrial cardiomyopathies and explore the patho-mechanistic insights as well as new therapeutic approaches that were uncovered with this experimental platform. Further, we discuss the challenges and limitations of this technology and provide an overview of the latest techniques to promote metabolic and functional maturation of iPSC-derived cardiomyocytes that might be necessary for modeling of mitochondrial disorders.
    Keywords:  heteroplasmy; iPSC-derived cardiomyocytes; induced pluripotent stem cells (hiPSCs); mitochondrial cardiomyopathy; mitochondrial disease; mtDNA
  2. Redox Biol. 2022 Jan 19. pii: S2213-2317(22)00013-1. [Epub ahead of print]50 102241
      Mitochondrial function is required to meet the energetic and metabolic requirements of the brain. Abnormalities in mitochondrial function, due to genetic or developmental factors, mitochondrial toxins, aging or insufficient mitochondrial quality control contribute to neurological and psychiatric diseases. Studying bioenergetics from postmortem human tissues has been challenging due to the diverse range of human genetics, health conditions, sex, age, and postmortem interval. Furthermore, fresh tissues that were in the past required for assessment of mitochondrial respiratory function were rarely available. Recent studies established protocols to use in bioenergetic analyses from frozen tissues using animal models and cell cultures. In this study we optimized these methods to determine the activities of mitochondrial electron transport in postmortem human brain. Further we demonstrate how these samples can be used to assess the susceptibility to the mitochondrial toxin rotenone and exposure to the reactive lipid species 4-hydroxynonenal. The establishment of such an approach will significantly impact translational studies of human diseases by allowing measurement of mitochondrial function in human tissue repositories.
    Keywords:  Bioenergetics; Citrate synthase; Electron transport chain activities; Lactate dehydrogenase; Postmortem human brain tissues
  3. Front Physiol. 2021 ;12 806426
      The vast majority of mitochondrial proteins are encoded in the nuclear genome and synthesized on cytosolic ribosomes as precursor proteins with specific mitochondrial targeting signals. Mitochondrial targeting signals are very diverse, however, about 70% of mitochondrial proteins carry cleavable, N-terminal extensions called presequences. These amphipathic helices with one positively charged and one hydrophobic surface target proteins to the mitochondrial matrix with the help of the TOM and TIM23 complexes in the outer and inner membranes, respectively. Translocation of proteins across the two mitochondrial membranes does not take place independently of each other. Rather, in the intermembrane space, where the two complexes meet, components of the TOM and TIM23 complexes form an intricate network of protein-protein interactions that mediates initially transfer of presequences and then of the entire precursor proteins from the outer to the inner mitochondrial membrane. In this Mini Review, we summarize our current understanding of how the TOM and TIM23 complexes cooperate with each other and highlight some of the future challenges and unresolved questions in the field.
    Keywords:  TIM23 complex; TOM complex; TOM-TIM23 contacts; intermembrane space; mitochondria; precursor transfer; presequence pathway; protein translocation
  4. Transplant Proc. 2022 Jan 21. pii: S0041-1345(21)00953-2. [Epub ahead of print]
      PURPOSE: Mitochondrial disease can affect many organs, including the brain, nerves, heart, liver, eyes, ears, pancreas, and kidneys. Kidney transplantation is a treatment option for renal failure due to mitochondrial disease; however, the prognosis of patients who undergo kidney transplantation for mitochondrial disease is unknown. Here we evaluated the outcomes of kidney transplant recipients with mitochondrial disease.METHODS: Clinical data were obtained from 4 kidney transplantation recipients who were followed at our department. Of the 4 transplantations, 3 were performed in our department: 2 patients received kidneys from their fathers, and a third from his wife. The fourth recipient received a kidney from her mother-who had a mitochondrial genetic abnormality-at another hospital. Of the 4 recipients, 3 were diagnosed with mitochondrial disease before the transplantation, and the fourth was diagnosed after. All recipients had sensorineural deafness and diabetes mellitus, and only 1 had a history of encephalopathy and stroke-like episodes before the transplantation.
    RESULTS: One patient died 2 years after transplantation due to encephalopathy progression with stable kidney function. The grafted kidney of the patient who received it from her mother lost function at 5 years post-transplantation. A graft biopsy revealed focal segmental glomerular sclerosis due to mitochondrial disease. The other patients' kidney functions remained stable. None of the recipients experienced rejection.
    CONCLUSIONS: In kidney transplantation for mitochondrial disease, attention should be paid to the exacerbation of comorbidities, while careful consideration should be given to donors with a mitochondrial genetic abnormality.
  5. EBioMedicine. 2022 Jan 24. pii: S2352-3964(22)00004-4. [Epub ahead of print]76 103815
      BACKGROUND: Mitochondrial DNA (mtDNA) encodes 37 genes necessary for synthesizing 13 essential subunits of the oxidative phosphorylation system. mtDNA alterations are known to cause mitochondrial disease (MitD), a clinically heterogeneous group of disorders that often present with neuropsychiatric symptoms. Understanding the nature and frequency of mtDNA alterations in health and disease could be a cornerstone in disentangling the relationship between biochemical findings and clinical symptoms of brain disorders. This systematic review aimed to summarize the mtDNA alterations in human brain tissue reported to date that have implications for further research on the pathophysiological significance of mtDNA alterations in brain functioning.METHODS: We searched the PubMed and Embase databases using distinct terms related to postmortem human brain and mtDNA up to June 10, 2021. Reports were eligible if they were empirical studies analysing mtDNA in postmortem human brains.
    FINDINGS: A total of 158 of 637 studies fulfilled the inclusion criteria and were clustered into the following groups: MitD (48 entries), neurological diseases (NeuD, 55 entries), psychiatric diseases (PsyD, 15 entries), a miscellaneous group with controls and other clinical diseases (5 entries), ageing (20 entries), and technical issues (5 entries). Ten entries were ascribed to more than one group. Pathogenic single nucleotide variants (pSNVs), both homo- or heteroplasmic variants, have been widely reported in MitD, with heteroplasmy levels varying among brain regions; however, pSNVs are rarer in NeuD, PsyD and ageing. A lower mtDNA copy number (CN) in disease was described in most, but not all, of the identified studies. mtDNA deletions were identified in individuals in the four clinical categories and ageing. Notably, brain samples showed significantly more mtDNA deletions and at higher heteroplasmy percentages than blood samples, and several of the deletions present in the brain were not detected in the blood. Finally, mtDNA heteroplasmy, mtDNA CN and the deletion levels varied depending on the brain region studied.
    INTERPRETATION: mtDNA alterations are well known to affect human tissues, including the brain. In general, we found that studies of MitD, NeuD, PsyD, and ageing were highly variable in terms of the type of disease or ageing process investigated, number of screened individuals, studied brain regions and technology used. In NeuD and PsyD, no particular type of mtDNA alteration could be unequivocally assigned to any specific disease or diagnostic group. However, the presence of mtDNA deletions and mtDNA CN variation imply a role for mtDNA in NeuD and PsyD. Heteroplasmy levels and threshold effects, affected brain regions, and mitotic segregation patterns of mtDNA alterations may be involved in the complex inheritance of NeuD and PsyD and in the ageing process. Therefore, more information is needed regarding the type of mtDNA alteration, the affected brain regions, the heteroplasmy levels, and their relationship with clinical phenotypes and the ageing process.
    FUNDING: Hospital Universitari Institut Pere Mata; Institut d'Investigació Sanitària Pere Virgili; Instituto de Salud Carlos III, Ministerio de Ciencia e Innovación (PI18/00514).
    Keywords:  Ageing; Mitochondrial DNA; Mitochondrial diseases; Neurological diseases; Postmortem; Psychiatric diseases
  6. Genome Res. 2022 Jan 24. pii: gr.276013.121. [Epub ahead of print]
    Genome Aggregation Database Consortium
      Genomic databases of allele frequency are extremely helpful for evaluating clinical variants of unknown significance; however, until now, databases such as the Genome Aggregation Database (gnomAD) have focused on nuclear DNA and have ignored the mitochondrial genome (mtDNA). Here we present a pipeline to call mtDNA variants that addresses three technical challenges: (i) detecting homoplasmic and heteroplasmic variants, present respectively in all or a fraction of mtDNA molecules, (ii) circular mtDNA genome, and (iii) misalignment of nuclear sequences of mitochondrial origin (NUMTs). We observed that mtDNA copy number per cell varied across gnomAD cohorts and influenced the fraction of NUMT-derived false-positive variant calls, which can account for the majority of putative heteroplasmies. To avoid false positives, we excluded contaminated samples, cell lines, and samples prone to NUMT misalignment due to few mtDNA copies. Furthermore, we report variants with heteroplasmy greater than 10%. We applied this pipeline to 56,434 whole genome sequences in the gnomAD v3.1 database that includes individuals of European (58%), African (25%), Latino (10%), and Asian (5%) ancestry. Our gnomAD v3.1 release contains population frequencies for 10,850 unique mtDNA variants at more than half of all mtDNA bases. We report frequencies within each nuclear ancestral population and mitochondrial haplogroup. Homoplasmic variants account for most variant calls (98%) and unique variants (85%). We observed that 1/250 individuals carry a pathogenic mtDNA variant with heteroplasmy above 10%. These mtDNA population allele frequencies are freely accessible and will aid in diagnostic interpretation and research studies.
  7. J Control Release. 2022 Jan 22. pii: S0168-3659(22)00039-6. [Epub ahead of print]
      As the major energy supplier in cells, mitochondria play a significant role in regulating cellular processes. The pathogenesis of various diseases is found to be associated with dysfunctional mitochondria, and supplement of functional mitochondria has been regarded as a potential therapeutic strategy. To achieve mitochondrial replenishment, transplantation of isolated mitochondria or utilization of cells as selective mitochondrial carrier have been developed. On the one hand, isolated mitochondria can be internalized into injured cells to restore impaired functions. On the other hand, the natural process of intercellular mitochondrial transfer can replace the dysfunctional mitochondria with functional mitochondria, providing a safe and effective way to rescue damaged tissues. Cell mediated mitochondrial transfer can serve as a promising targeted therapy with mitochondria being high-efficient biotherapeutics. In this review, we summarize the updated findings of mitochondrial delivery strategies, offering an overview of the role of mitochondria, mechanisms of intercellular mitochondrial transfer, therapeutic benefits, challenges and prospects of mitochondrial delivery. The understanding of mitochondrial delivery helps to improve the therapeutic outcomes of mitochondrial dysfunctional diseases in the future.
    Keywords:  Delivery; Mitochondria; Regenerative potential; Stem cells; Transplantation
  8. J Biochem. 2022 Jan 26. pii: mvac005. [Epub ahead of print]
      In addition to the cytoplasmic translation system, eukaryotic cells house additional protein synthesis machinery in mitochondria. The importance of this in organello translation is exemplified by clinical pathologies associated with mutations in mitochondrial translation factors. Although a detailed understanding of mitochondrial translation has long been awaited, quantitative, comprehensive, and spatiotemporal measurements have posed analytic challenges. The recent development of novel approaches for studying mitochondrial protein synthesis has overcome these issues and expands our understanding of the unique translation system. Here, we review the current technologies for the investigation of mitochondrial translation and the insights provided by their application.
    Keywords:  FUNCAT; Mitochondria; Mitoribosome; Ribosome profiling; Translation
  9. Cerebellum. 2022 Jan 27.
      Spinocerebellar ataxia type 31 (SCA31), an autosomal-dominant neurodegenerative disorder characterized by progressive cerebellar ataxia with Purkinje cell degeneration, is caused by a heterozygous 2.5-3.8 kilobase penta-nucleotide repeat of (TTCCA)n in intron 11 of the thymidine kinase 2 (TK2) gene. TK2 is an essential mitochondrial pyrimidine-deoxyribonucleoside kinase. Bi-allelic loss-of-function mutations of TK2 lead to mitochondrial DNA depletion syndrome (MDS) in humans through severe (~ 70%) reduction of mitochondrial electron-transport-chain activity, and tk2 knockout mice show Purkinje cell degeneration and ataxia through severe mitochondrial cytochrome-c oxidase subunit I (COX I) protein reduction. To clarify whether TK2 function is altered in SCA31, we investigated TK2 and COX I expression in human postmortem SCA31 cerebellum. We confirmed that canonical TK2 mRNA is transcribed from exons far upstream of the repeat site, and demonstrated that an extended version of TK2 mRNA ("TK2-EXT"), transcribed from exons spanning the repeat site, is expressed in human cerebellum. While canonical TK2 was conserved among vertebrates, TK2-EXT was specific to primates. Reverse transcription-PCR demonstrated that both TK2 mRNAs were preserved in SCA31 cerebella compared with control cerebella. The TK2 proteins, assessed with three different antibodies including our original polyclonal antibody against TK2-EXT, were detected as ~ 26 kilodalton proteins on western blot; their levels were similar in SCA31 and control cerebella. COX I protein level was preserved in SCA31 compared to nuclear DNA-encoded protein. We conclude that the expression and function of TK2 are preserved in SCA31, suggesting a mechanism distinct from that of MDS.
    Keywords:  Cytochrome-c oxidase (COX); Mitochondria; Mitochondrial DNA depletion syndrome (MDS); Purkinje cell; Spinocerebellar ataxia type 31 (SCA31); Thymidine kinase 2 (TK2)
  10. mBio. 2022 Jan 25. e0209621
      Mitochondria are dynamic organelles vital for energy production with now appreciated roles in immune defense. During microbial infection, mitochondria serve as signaling hubs to induce immune responses to counteract invading pathogens like viruses. Mitochondrial functions are central to a variety of antiviral responses including apoptosis and type I interferon signaling (IFN-I). While apoptosis and IFN-I mediated by mitochondrial antiviral signaling (MAVS) are well-established defenses, new dimensions of mitochondrial biology are emerging as battlefronts during viral infection. Increasingly, it has become apparent that mitochondria serve as reservoirs for distinct cues that trigger immune responses and that alterations in mitochondrial morphology may also tip infection outcomes. Furthermore, new data are foreshadowing pivotal roles for classic, homeostatic facets of this organelle as host-virus interfaces, namely, the tricarboxylic acid (TCA) cycle and electron transport chain (ETC) complexes like respiratory supercomplexes. Underscoring the importance of "housekeeping" mitochondrial activities in viral infection is the growing list of viral-encoded inhibitors including mimics derived from cellular genes that antagonize these functions. For example, virologs for ETC factors and several enzymes from the TCA cycle have been recently identified in DNA virus genomes and serve to pinpoint new vulnerabilities during infection. Here, we highlight recent advances for known antiviral functions associated with mitochondria as well as where the next battlegrounds may be based on viral effectors. Collectively, new methodology and mechanistic insights over the coming years will strengthen our understanding of how an ancient molecular truce continues to defend cells against viruses.
    Keywords:  C15orf48; DAMP; MAVS; MISTR; NDUFA4; OXPHOS; TCA cycle; apoptosis; interferon; micropeptides; mimics; mitochondria; mitochondrial dynamics; mtDNA; mtROS; mtdsRNA; pyroptosis; supercomplexes; virologs; virus
  11. Am J Physiol Endocrinol Metab. 2022 Jan 24.
      Neuromedin B (NB), a bombesin-like peptide, exerts its specific actions by binding to the neuromedin B receptor (NBR), a G protein-coupled receptor. Female NBR-knockout (NBR-KO) mice exhibit resistance to diet-induced obesity, without hyperphagia, suggesting possible increase in energy expenditure. Skeletal muscle (SM) is crucial for whole-body energy homeostasis, however the presence of NB-NBR signaling and effects in SM are unknown. Here we show that male and female wild type express Nmbr and Nmb mRNA in SM, with higher levels in females. Female NBR-KO gastrocnemius showed increased Myh7 mRNA level, which characterizes type I fibers (oxidative profile). Their permeabilized gastrocnemius fibers, studied by high-resolution respirometry, exhibited higher consumption of O2 coupled to ATP synthesis and unaltered uncoupled respiration. NBR-KO gastrocnemius had higher protein levels of ATP-synthase, and of Nduf9 mRNA, corresponding to mitochondrial complex I subunit. NBR-KO gastrocnemius exhibited slight increase in mitochondria number, increased thickness of Z line at electron microscopy, and unaltered mitochondrial dynamics markers. Therefore, in the females´ gastrocnemius, a predominantly glycolytic SM, the NBR absence promotes changes that favor mitochondrial oxidative phosphorylation capacity. Additionally, in L6 myocytes, NB treatment (5 μg/mL/16 h) promoted lower O2 consumption coupled to ATP synthesis, suggesting direct action at SM cells. Altogether, the study reinforces the hypothesis that inhibition of NB-NBR signaling enhances the capacity for oxidative phosphorylation of white SM, encouraging future studies to elucidate their contribution on other types of SM and to whole body energy expenditure, which may lead to a new target to drug development for obesity treatment.
    Keywords:  G protein-coupled receptor; energy metabolism; mitochondrial energetics; neuromedin B receptor; skeletal muscle
  12. J Neurol. 2022 Jan 28.
      BACKGROUND: Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome is a genetically heterogeneous disorder caused by mitochondrial DNA (mtDNA) mutations in the MT-TL1 gene. The pathophysiology of neurological manifestations is still unclear, but neuronal hyperexcitability and neuron-astrocyte uncoupling have been suggested. Glutamatergic neurotransmission is linked to glucose oxidation and mitochondrial metabolism in astrocytes and neurons. Given the relevance of neuron-astrocyte metabolic coupling and astrocyte function regulating energetic metabolism, we aimed to assess glutamate and glutamine CSF levels in MELAS patients.METHODS: This prospective observational case-control study determined glutamate and glutamine CSF levels in patients with MELAS syndrome and compared them with controls. The plasma and CSF levels of the remaining amino acids and lactate were also determined.
    RESULTS: Nine adult patients with MELAS syndrome (66.7% females mean age 35.8 ± 3.2 years) and 19 controls (63.2% females mean age 42.7 ± 3.8 years) were included. The CSF glutamate levels were significantly higher in patients with MELAS than in controls (18.48 ± 1.34 vs. 5.31 ± 1.09 μmol/L, p < 0.001). Significantly lower glutamine concentrations in patients with MELAS than controls were shown in CSF (336.31 ± 12.92 vs. 407.06 ± 15.74 μmol/L, p = 0.017). Moreover, the CSF levels of alanine, the branched-chain amino acids (BCAAs) and lactate were significantly higher in patients with MELAS.
    CONCLUSIONS: Our results suggest the glutamate-glutamine cycle is altered probably due to metabolic imbalance, and as a result, the lactate-alanine and BCAA-glutamate cycles are upregulated. These findings might have therapeutic implications in MELAS syndrome.
    Keywords:  Branched-chain amino acids; Glutamate; Glutamine; MELAS; Mitochondrial disease
  13. Epigenomes. 2021 Dec 22. pii: 1. [Epub ahead of print]6(1):
      Striated muscle has especially large energy demands. We identified 97 genes preferentially expressed in skeletal muscle and heart, but not in aorta, and found significant enrichment for mitochondrial associations among them. We compared the epigenomic and transcriptomic profiles of the 27 genes associated with striated muscle and mitochondria. Many showed strong correlations between their tissue-specific transcription levels, and their tissue-specific promoter, enhancer, or open chromatin as well as their DNA hypomethylation. Their striated muscle-specific enhancer chromatin was inside, upstream, or downstream of the gene, throughout much of the gene as a super-enhancer (CKMT2, SLC25A4, and ACO2), or even overlapping a neighboring gene (COX6A2, COX7A1, and COQ10A). Surprisingly, the 3' end of the 1.38 Mb PRKN (PARK2) gene (involved in mitophagy and linked to juvenile Parkinson's disease) displayed skeletal muscle/myoblast-specific enhancer chromatin, a myoblast-specific antisense RNA, as well as brain-specific enhancer chromatin. We also found novel tissue-specific RNAs in brain and embryonic stem cells within PPARGC1A (PGC-1α), which encodes a master transcriptional coregulator for mitochondrial formation and metabolism. The tissue specificity of this gene's four alternative promoters, including a muscle-associated promoter, correlated with nearby enhancer chromatin and open chromatin. Our in-depth epigenetic examination of these genes revealed previously undescribed tissue-specific enhancer chromatin, intragenic promoters, regions of DNA hypomethylation, and intragenic noncoding RNAs that give new insights into transcription control for this medically important set of genes.
    Keywords:  DNA methylation; PGC-1α/PPARGC1A; PRKN/PARK2; Parkinson’s disease; enhancer; epigenetics; heart; mitochondria; mitophagy; skeletal muscle
  14. FEBS Lett. 2022 Jan 28.
      Mitochondria are associated with various cellular activities critical to homeostasis, particularly in the nervous system. The plastic architecture of the mitochondrial network and its dynamic structure play crucial roles in ensuring that varying energetic demands are rapidly met to maintain neuronal and axonal energy homeostasis. Recent evidence associates ageing and neurodegeneration with anomalous neuronal metabolism, as age-dependent alterations of neuronal metabolism are now believed to occur prior to neurodegeneration. The brain has a high energy demand, which makes it particularly sensitive to mitochondrial dysfunction. Distinct cellular events causing oxidative stress or disruption of metabolism and mitochondrial homeostasis can trigger a neuropathology. This review explores the bioenergetic hypothesis for the neurodegenerative pathomechanisms, discussing factors leading to age-related brain hypometabolism and its contribution to cognitive decline. Recent research on the mitochondrial network in healthy nervous system cells, its response to stress and how it is affected by pathology, as well as current contributions to novel therapeutic approaches will be highlighted.
    Keywords:  Alzheimer; Huntington; Parkinson; ROS; ageing; axon; mitochondria; mitophagy; neurodegeneration; neuron
  15. BMC Ophthalmol. 2022 Jan 24. 22(1): 35
      BACKGROUND: Kearns-Sayre syndrome (KSS) is a rare, multisystem mitochondrial encephalomyopathy. We report a case of KSS with a novel 7.6-kb deletion as assessed through a long-range polymerase chain reaction (PCR) study in the blood. In addition, optical coherence tomography angiography (OCTA) confirmed deep retinal capillary atrophy for the first time.CASE PRESENTATION: A 13-year-old patient presented with progressive vision loss and difficulty with eye opening and was diagnosed with progressive external ophthalmoplegia and retinitis pigmentosa (RP). The patient also experienced heart block, vestibular dysfunction, growth retardation and multiple demyelinating lesions. A long-range PCR study in the blood revealed a large-scale Chrm: 6341-13,993 deletion, which was first reported and broadened the genetic spectrum of this disease. The patient underwent complete ophthalmic examination, medical history review and gene detection, resulting in a confirmation of the diagnosis of KSS. The patient was given a pair of applicable glasses to wear and was followed up every 3 months. An implantable pacemaker was also installed based on the advice of the physician.
    CONCLUSIONS: We reported a novel large-scale deletion in the mitochondrial DNA of KSS, and OCTA was used for the first time to confirm deep retinal capillary atrophy. Furthermore, because ophthalmic symptoms are often the primary manifestation of KSS, the relationship between ophthalmology and mitochondrial diseases should be emphasised.
    Keywords:  Kearns–Sayre syndrome; Large-scale deletion; OCTA
  16. J Inherit Metab Dis. 2022 Jan 25.
      Inherited errors of mitochondrial fatty acid β-oxidation (FAO) are life threatening, even with optimum care. FAO is the major source of energy for heart and is critical for skeletal muscles especially during physiologic stress. Clinical trials revealed that triheptanoin (commercially known as DojolviTM ; C7G), improved heart function and decreased hypoglycemia in long chain FAO disorders, but other symptoms including rhabdomyolysis persisted, suggesting suboptimal tissue distribution/utilization of heptanoic acid (C7) conjugates and/or rapid liver breakdown. In this study medium branched chain fatty acids were tested as potential anaplerotic treatments in fibroblasts from patients deficient in very long chain acyl-CoA dehydrogenase (VLCAD), long chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD), trifunctional protein (TFP), and carnitine palmitoyltransferase II (CPT II). Cells were cultured to near confluency and treated with C7, 2,6-dimethylheptanoic acid (dMC7), 6-amino-2,4-dimethylheptanoic acid (AdMC7), or 4,8-dimethylnonanoic acid (dMC9) for 72 hours and targeted metabolomics performed. The profile of TCA cycle intermediates was improved in cells treated with these branched chain fatty acids compared to C7. Intracellular propionate was higher in AdMC7 treated cells compared to C7 in VLCAD, LCHAD, and TFP deficient cell lines. With AdMC7 treatment, succinate was higher in CPT II and VLCAD deficient cells, compared to C7. Malate and glutamate were consistently higher in AdMC7 treated VLCAD, LCHAD, TFP, and CPT II deficient cells compared to the C7 treatment. The results provide the impetus to further evaluate and consider branched chain fatty acids as viable anaplerotic therapy for fatty acid oxidation disorders and other diseases. This article is protected by copyright. All rights reserved.
    Keywords:  CPT II deficiency; DojolviTM; LC-FAOD; LCHAD deficiency; MCT oil; TFP deficiency; VLCAD deficiency; long chain fatty acid oxidation disorders; medium branched chain fatty acids; triheptanoin
  17. Cell Mol Life Sci. 2022 Jan 24. 79(2): 91
      Mitochondria tailor their morphology to execute their specialized functions in different cell types and/or different environments. During spermatogenesis, mitochondria undergo continuous morphological and distributional changes with germ cell development. Deficiencies in these processes lead to mitochondrial dysfunction and abnormal spermatogenesis, thereby causing male infertility. In recent years, mitochondria have attracted considerable attention because of their unique role in the regulation of piRNA biogenesis in male germ cells. In this review, we describe the varied characters of mitochondria and focus on key mitochondrial factors that play pivotal roles in the regulation of spermatogenesis, from primordial germ cells to spermatozoa, especially concerning metabolic shift, stemness and reprogramming, mitochondrial transformation and rearrangement, and mitochondrial defects in human sperm. Further, we discuss the molecular mechanisms underlying these processes.
    Keywords:  Gene mutation; Human infertility; Male germ cells; Mitochondria; Spermatogenesis
  18. Mitochondrion. 2022 Jan 22. pii: S1567-7249(22)00006-X. [Epub ahead of print]
      Several drug targets have been amenable to drug discovery pursuit not until the characterization of the mitochondrial permeability transition pore (MPTP), a pore with an undefined molecular identity that forms on the inner mitochondrial membrane upon mitochondrial permeability transition (MPT) under the influence of calcium overload and oxidative stress. The opening of the pore which is presumed to cause cell death in certain human diseases also has implications under physiological parlance. The mitochondrial community has witnessed many protein candidates such as; voltage-dependent anion channel (VDAC), adenine nucleotide translocase (ANT), Mitochondrial phosphate carrier (PiC), Spastic Paralegin (SPG7), disordered proteins, and F1Fo ATPase. Also, different models for this pore have been postulated in the last six decades since it was characterized but genetic studies have cast out most of these candidates with only F1Fo ATPase currently under intense argument. Cyclophilin D (CyPD) remains the widely accepted positive regulator of the MPTP known to date, but no drug candidate has emerged as its inhibitor, raising concern issues for therapeutics. Thus, in this review, we discuss various models of MPTP reported with the hope of stimulating further research in this field. We went beyond the classical description of the MPTP to ascribe a 'two-edged sword property' to the pore for therapeutic function in human disease because its inhibition and activation have pharmacological relevance. We identified putative proteins upstream to CyPD that can regulate its activity and prevent cell deaths in neurodegenerative disease and ischemia-reperfusion injury.
    Keywords:  Cyclophilin D; Ischemia Reperfusion Injury; Mitochondrial permeability transition pore (MPTP); Neurodegenerative disease; drug discovery; mitochondrial permeability transition (MPT)
  19. J Physiol. 2022 Jan 24.
      KEY POINTS: Denervation is an experimental model of peripheral neuropathies as well as muscle disuse, and it helps us understand some aspects of the sarcopenia of aging. Muscle disuse is associated with reduced mitochondrial content and function, leading to metabolic impairments within the tissue. Although the processes that regulate mitochondrial biogenesis are understood, those that govern mitochondrial breakdown (i.e., mitophagy) are not well characterized in this context. Autophagy and mitophagy flux, measured up to the point of the lysosome (pre-lysosomal flux rates), were increased in the early stages of denervation, along with mitochondrial dysfunction, but were reduced at later time points when the degree of muscle atrophy was highest. Denervation led to progressive increases in lysosomal proteins to accommodate mitophagy flux, yet evidence for lysosomal impairment at later stages may limit the removal of dysfunctional mitochondria, stimulate reactive oxygen species signaling, and reduce muscle health as denervation time progresses.ABSTRACT: Deficits in skeletal muscle mitochondrial content and quality are observed following denervation-atrophy. This is due to alterations in the biogenesis of new mitochondria as well as their degradation via mitophagy. The regulation of autophagy and mitophagy over the course of denervation (Den) remains unknown. Further, the time-dependent changes in lysosome content, the end-stage organelle for mitophagy, remains unexplored. Here, we studied autophagic as well as mitophagic pre-lysosomal flux in subsarcolemmal (SS) and intermyofibrillar (IMF) mitochondria from rat muscle subjected to Den for 1, 3, or 7 days. We also assessed flux at 1-day post-denervation in transgenic mt-keima mice. Markers of mitochondrial content were reduced at 7 days following Den, and Den further resulted in rapid decrements in mitochondrial respiration, along with increased ROS emission. Pre-lysosomal autophagy flux was upregulated at 1- and 3-days post-Den but was reduced compared to time-matched sham-operated controls at 7-days post-Den. Similarly, pre-lysosomal mitophagy flux was enhanced in SS mitochondria as early as 1- and 3-days of Den but decreased in both SS and IMF subfractions following 7 days of Den. Lysosome protein content and transcriptional regulators TFEB and TFE3 were progressively enhanced with Den, an adaptation designed to enhance autophagic capacity. However, evidence for lysosome dysfunction was apparent by 7 days, which may limit degradation capacity. This may contribute to an inability to clear dysfunctional mitochondria and increased ROS signaling, thereby accelerating muscle atrophy. Thus, therapeutic targeting of lysosome function may help to maintain autophagy and muscle health during conditions of muscle disuse or denervation. Abstract figure legend This study investigates the temporal regulation of the autophagy-lysosome system in rat skeletal muscle following neuromuscular denervation (Den) with a focus on mitochondrial decay through mitophagy. We show that mitochondrial dysfunction is time-dependant, with elevations at 3-days post-Den and further at 7 days, preceding decrements in mitochondrial protein content. Deficits in mitochondrial content may be explained by prior elevations in mitophagy as early as 1- and 3-days post-Den, but these elevations were bi-phasic, returning to lower values by 7-days post-Den. To meet the demands of increased autophagy, lysosome protein content was progressively upregulated with 3- and 7-day of Den, but evidence of lysosome dysfunction was evident, and this could impede the removal of poor-quality mitochondria. Overall, these changes in the autophagy-lysosome system following neuromuscular denervation and provide insight into the processes that contribute to Den-induced muscle atrophy. Representative graphs are Den/Sham, with the dotted line representing sham-operated control values. This article is protected by copyright. All rights reserved.
    Keywords:  TFEB; atrophy; lysosome dysfunction; mitochondrial dysfunction; reactive oxygen species
  20. Aging Cell. 2022 Jan 28. e13539
      Mild uncoupling of oxidative phosphorylation is an intrinsic property of all mitochondria and may have evolved to protect cells against the production of damaging reactive oxygen species. Therefore, compounds that enhance mitochondrial uncoupling are potentially attractive anti-aging therapies; however, chronic ingestion is associated with a number of unwanted side effects. We have previously developed a controlled-release mitochondrial protonophore (CRMP) that is functionally liver-directed and promotes oxidation of hepatic triglycerides by causing a subtle sustained increase in hepatic mitochondrial inefficiency. Here, we sought to leverage the higher therapeutic index of CRMP to test whether mild mitochondrial uncoupling in a liver-directed fashion could reduce oxidative damage and improve age-related metabolic disease and lifespan in diet-induced obese mice. Oral administration of CRMP (20 mg/[kg-day] × 4 weeks) reduced hepatic lipid content, protein kinase C epsilon activation, and hepatic insulin resistance in aged (74-week-old) high-fat diet (HFD)-fed C57BL/6J male mice, independently of changes in body weight, whole-body energy expenditure, food intake, or markers of hepatic mitochondrial biogenesis. CRMP treatment was also associated with a significant reduction in hepatic lipid peroxidation, protein carbonylation, and inflammation. Importantly, long-term (49 weeks) hepatic mitochondrial uncoupling initiated late in life (94-104 weeks), in conjugation with HFD feeding, protected mice against neoplastic disorders, including hepatocellular carcinoma (HCC), in a strain and sex-specific manner. Taken together, these studies illustrate the complex variation of aging and provide important proof-of-concept data to support further studies investigating the use of liver-directed mitochondrial uncouplers to promote healthy aging in humans.
    Keywords:  2,4-dinitrophenol; anti-aging; hepatic steatosis; insulin sensitivity; longevity; mitochondrial uncoupling
  21. FASEB J. 2022 Feb;36(2): e22146
      Mitochondria are maternally inherited organelles that play critical tissue-specific roles, including hormone synthesis and energy production, that influence human development, health, and aging. However, whether mitochondria from women and men exhibit consistent biological differences remains unclear, representing a major gap in knowledge. This meta-analysis systematically examined four domains and six subdomains of mitochondrial biology (total 39 measures), including mitochondrial content, respiratory capacity, reactive oxygen species (ROS) production, morphometry, and mitochondrial DNA copy number. Standardized effect sizes (Hedge's g) of sex differences were computed for each measure using data in 2258 participants (51.5% women) from 50 studies. Only two measures demonstrated aggregate binary sex differences: higher mitochondrial content in women's WAT and isolated leukocyte subpopulations (g = 0.20, χ2 p = .01), and higher ROS production in men's skeletal muscle (g = 0.49, χ2 p < .0001). Sex differences showed weak to no correlation with age or BMI. Studies with small sample sizes tended to overestimate effect sizes (r = -.17, p < .001), and sex differences varied by tissue examined. Our findings point to a wide variability of findings in the literature concerning possible binary sex differences in mitochondrial biology. Studies specifically designed to capture sex- and gender-related differences in mitochondrial biology are needed, including detailed considerations of physical activity and sex hormones.
    Keywords:  mitochondrion; mtDNAcn; respirometry; sex differences; sexual dimorphism
  22. Life Sci. 2022 Jan 19. pii: S0024-3205(22)00038-8. [Epub ahead of print] 120338
      BACKGROUND AND PURPOSE: Ischemic reperfusion (I/R) injury causes a wide array of functional and structure alternations of mitochondria, associated with oxidative stress and increased the severity of injury. Despite the previous evidence for N-acetyl L-cysteine (NAC) provide neuroprotection after I/R injury, it is unknown to evaluate the effect of NAC on altered mitochondrial autophagy forms an essential axis to impaired mitochondrial quality control in cerebral I/R injury.METHODS: Male wistar rats subjected to I/R injury were used as transient Middle Cerebral Artery Occlusion (tMCAO) model. After I/R injury, the degree of cerebral tissue injury was detected by infarct volume, H&E staining and behavioral assessment. We also performed mitochondrial reactive oxygen species and mitochondrial membrane potential by flow cytometry and mitochondrial respiratory complexes to evaluate the mitochondrial dysfunction. Finally, we performed the western blotting analysis to measure the apoptotic and autophagic marker.
    RESULTS: We found that NAC administration significantly ameliorates brain injury, improves neurobehavioral outcome, decreases neuroinflammation and mitochondrial mediated oxidative stress. We evaluated the neuroprotective effect of NAC against neuronal apoptosis by assessing its ability to sustained mitochondrial integrity and function. Further studies revealed that beneficial effects of NAC is through targeting the mitochondrial autophagy via regulating the GSK-3β/Drp1mediated mitochondrial fission and inhibiting the expression of beclin-1 and conversion of LC3, as well as activating the p-Akt pro-survival pathway.
    CONCLUSION: Our results suggest that NAC exerts neuroprotective effects to inhibit the altered mitochondrial changes and cell death in I/R injury via regulation of p-GSK-3β mediated Drp-1 translocation to the mitochondria.
    Keywords:  Apoptosis; Autophagy; Drp-1; Ischemic-stroke; Mitochondria
  23. Eur J Neurosci. 2022 Jan 25.
      Alzheimer's disease (AD), a progressive neurodegenerative disorder, has emerged as the most common form of dementia in the elderly. Two major pathological hallmarks have been identified for AD; extracellular amyloid plaques and intracellular neurofibrillary tangles (NFT). Recently, dynamin-related protein 1 (Drp1) was recognized to contribute significantly towards the pathogenesis of AD. Drp1 is primarily located in the cytosol, from where it translocates to the mitochondrial outer membrane and drives the mitochondrial fission via GTP hydrolysis. Drp1 interacts with Aβ and phosphorylated tau, leading to excessive mitochondrial fragmentation, which in turn results in synaptic dysfunction, neuronal damage, and cognitive decline. Several studies suggest an increase in the level of Drp1 in the post-mortem brain specimen collected from the AD patients and murine models of AD. Interestingly, heterozygous deletion of Drp1 in the transgenic murine model of AD ameliorates the mitochondrial dysfunction, improves learning and memory. The current review article discusses the possible mechanistic pathways by which Drp1 can influence the pathogenesis of AD. Besides, it will describe various inhibitors for Drp1 and their potential role as therapeutics for AD in the future.
    Keywords:  Drp1; Mitophagy; Neurodegeneration; Neurofibrillary tangles; Tau phosphorylation; amyloid plaques
  24. Front Neurol. 2021 ;12 793547
      A wide spectrum of neurodegenerative diseases has been associated with pathogenic variants in the PNPLA6 (patatin-like phospholipase domain-containing protein 6) gene, including spastic paraplegia type 39, Gordon-Holmes, Boucher-Neuhauser, Oliver-Mc Farlane, and Laurence-Moon syndromes. These syndromes present variable and overlapping clinical symptoms, encompassing cerebellar ataxia, hypogonadotropic hypogonadism, chorioretinal dystrophy, spastic paraplegia, muscle wasting, peripheral neuropathy, and cognitive impairment. In the present study, we performed a wide genetic screening in 292 patients presenting with ataxia or spastic paraplegia using a probe-based customized gene panel, covering >200 genes associated with spinocerebellar diseases. We identified six novel and four recurrent PNPLA6 gene variants in eight patients (2.7%). Six patients presented an infantile or juvenile onset (age <18), and two patients had an adult onset. Cerebellar ataxia was observed in seven patients and spastic paraplegia in one patient. Progression of cerebellar symptoms was slow in all patients, who retained ambulation even after a mean disease duration of 15 years. Brain MRI showed cerebellar atrophy in 6/8 patients, more pronounced in superior and dorsal vermis lobules (I to VII). Additional clinical features included hypogonadotropic hypogonadism (5/8), growth hormone deficiency (2/8), peripheral axonal neuropathy (4/8), cognitive impairment (3/8), chorioretinal dystrophy (2/8), and bilateral vestibular areflexia with a reduced visual vestibule-ocular reflex (1/8). In accordance with previous studies, chorioretinal dystrophy was the most frequent presenting symptom in early onset patients, hypogonadotropic hypogonadism in juvenile onset cases, and cerebellar ataxia in adult patients. One patient had an initial clinical presentation compatible with Cerebellar Ataxia with Neuropathy and Vestibular Areflexia Syndrome (CANVAS), but no pathological expansions in the RFC1 gene. In conclusion, patients with PNPLA6 variants present a variable age of onset spanning from infancy to adulthood, and each clinical symptom has an age-dependent manifestation thus requiring a multi-systemic diagnostic approach. The description of patients presenting very late-onset cerebellar ataxia suggests that PNPLA6 genetic screening should also be considered in the diagnostic workout of adult cerebellar ataxia.
    Keywords:  Boucher Neuhauser syndrome; Gordon Holmes syndrome; Oliver Mc Farlane syndrome; cerebellar ataxia; chorioretinal dystrophy; hypogonadotropic hypogonadism; spastic paraplegia
  25. Front Microbiol. 2021 ;12 780768
      Mitochondria, which is essential for adequate innate immune response, energy metabolism and mitochondria reactive oxygen species (ROS) production, might be in the cross fire of Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and host cell defense. However, little is known about interactions between mitochondria and SARS-CoV-2. We performed fluorescent microscopy and found an enrichment of SARS-CoV-2 replication products double stranded RNA (dsRNA) within mitochondria. The entry process of dsRNA might be mediated by Tom20 as observed by reduced mitochondrial localization of SARS-CoV-2 dsRNA in Tom20 knockdown cells. Importantly, decreased mitochondrial localization of dsRNA, as well as mitochondrial membrane stabilizers mdivi-1 and cyclosporin A, inhibited viral load in cells. Next, we detected mitochondrial dysfunction caused by SARS-CoV-2 infection, including mitochondrial membrane depolarization, mitochondrial permeability transition pore opening and increased ROS release. In response to mitochondrial damage, we observed an increase in expression and mitochondrial accumulation of Pink1 and Parkin proteins, as well as Pink-1-mediated recruitment of P62 to mitochondria, suggesting initiated mitophagy for mitochondrial quality control and virus clearance. Nevertheless, we observed that mitophagy was inhibited and stayed in early stage with an unchanged Hsp60 expression post SARS-CoV-2 infection. This might be one of the anti-autophagy strategies of SARS-CoV-2 and we used co-immunoprecipitation to found that SARS-CoV-2 infection inhibited P62 and LC3 binding which plays a critical role in selective envelopment of substrates into autophagosomes. Our results suggest that mitochondria are closely involved in SARS-CoV-2 replication and mitochondrial homeostasis is disrupted by SARS-CoV-2 in the virus-cell confrontation.
    Keywords:  SARS-CoV-2; Tom20; mitochondria; mitophagy; viral RNA localization
  26. Nat Commun. 2022 Jan 27. 13(1): 546
      Antibiotic persistence describes the presence of phenotypic variants within an isogenic bacterial population that are transiently tolerant to antibiotic treatment. Perturbations of metabolic homeostasis can promote antibiotic persistence, but the precise mechanisms are not well understood. Here, we use laboratory evolution, population-wide sequencing and biochemical characterizations to identify mutations in respiratory complex I and discover how they promote persistence in Escherichia coli. We show that persistence-inducing perturbations of metabolic homeostasis are associated with cytoplasmic acidification. Such cytoplasmic acidification is further strengthened by compromised proton pumping in the complex I mutants. While RpoS regulon activation induces persistence in the wild type, the aggravated cytoplasmic acidification in the complex I mutants leads to increased persistence via global shutdown of protein synthesis. Thus, we propose that cytoplasmic acidification, amplified by a compromised complex I, can act as a signaling hub for perturbed metabolic homeostasis in antibiotic persisters.
  27. Antioxid Redox Signal. 2022 Jan 26.
      SIGNIFICANCE: Reactive oxygen species (ROS) are highly reactive compounds that behave like a double-edged sword: they damage cellular structures and act as second messengers in signal transduction. Mitochondria and endoplasmic reticulum (ER) are interconnected organelles with a central role in ROS production, detoxification, and oxidative stress response. Skeletal muscle is the most abundant tissue in mammals and one of the most metabolically active ones and thus relies mainly on oxidative phosphorylation (OxPhos) to synthesize ATP. The impairment of OxPhos leads to myopathy and increased ROS production, thus affecting both redox poise and signaling. In addition, ROS enter the ER and trigger ER stress and its maladaptive response, which also leads to a myopathic phenotype with mitochondrial involvement. Here, we will review the role of ROS signaling in myopathies due to either mitochondrial or ER dysfunction. Recent advances. Relevant advances have been evolving over the last ten years on the intricate ROS-dependent pathways which act as modifiers of the disease course in several myopathies. To this end, pathways related to mitochondrial biogenesis, satellite cells differentiation, and ER stress have been studied extensively in myopathies.CRITICAL ISSUES: The analysis of the chemistry, the exact quantitation as well as the localization of ROS are still challenging due to the intrinsic labile nature of ROS and the technical limitations of their sensors.
    FUTURE DIRECTIONS: The mechanistic studies of the pathogenesis of mitochondrial and ER-related myopathies offer a unique possibility to discover novel ROS-dependent pathways.
  28. Cell Rep. 2022 Jan 25. pii: S2211-1247(21)01805-2. [Epub ahead of print]38(4): 110290
      Invaginations of the mitochondrial inner membrane, termed cristae, are hubs for oxidative phosphorylation. The mitochondrial contact site and cristae organizing system (MICOS) and the dimeric F1Fo-ATP synthase play important roles in controlling cristae architecture. A fraction of the MICOS core subunit Mic10 is found in association with the ATP synthase, yet it is unknown whether this interaction is of relevance for mitochondrial or cellular functions. Here, we established conditions to selectively study the role of Mic10 at the ATP synthase. Mic10 variants impaired in MICOS functions stimulate ATP synthase oligomerization like wild-type Mic10 and promote efficient inner membrane energization, adaptation to non-fermentable carbon sources, and respiratory growth. Mic10's functions in respiratory growth largely depend on Mic10ATPsynthase, not on Mic10MICOS. We conclude that Mic10 plays a dual role as core subunit of MICOS and as partner of the F1Fo-ATP synthase, serving distinct functions in cristae shaping and respiratory adaptation and growth.
    Keywords:  ATP synthase; MICOS; Mic10; cristae organization; inner membrane; membrane architecture; membrane potential; metabolic adaptation; mitochondria; respiration
  29. Nanotoxicology. 2022 Jan 25. 1-22
      Broad applications of cobalt nanoparticles (CoNPs) have raised increased concerns regarding their potential toxicity. However, the underlining mechanisms of their toxicity have yet to be characterized. Here, we demonstrated that CoNPs reduced cell viability and induced membrane leakage. CoNPs induced oxidative stress, as indicated by the generation of reactive oxygen species (ROS) secondary to the increased expression of hypoxia-induced factor 1 alpha. Moreover, CoNPs led to mitochondrial damage, including generation of mitochondrial ROS, reduction in ATP content, morphological damage and autophagy. Interestingly, exogenous mitochondria were observed between neurons and astrocytes upon CoNPs exposure. Concomitantly, tunneling nanotubes (TNTs)-like structures were observed between neurons and astrocytes upon CoNPs exposure. These structures were further verified to be TNTs as they were found to be F-actin rich and lacking tubulin. We then demonstrated that TNTs were utilized for mitochondrial transfer between neurons and astrocytes, suggesting a novel crosstalk phenomenon between these cells. Moreover, we found that the inhibition of TNTs (using actin-depolymerizing drug latrunculin B) intensified apoptosis triggered by CoNPs. Therefore, we demonstrate, for the first time, that the inhibition of intercellular mitochondrial transfer via TNTs aggravates CoNPs-induced cellular and mitochondrial toxicity in neuronal cells, implying a novel intercellular protection mechanism in response to nanoparticle exposure.
    Keywords:  Cobalt nanoparticles (CoNPs); astrocytes; mitochondrial transfer; neurotoxicity; tunneling nanotubes (TNTs)