bims-mitlys Biomed News
on Mitochondria and Lysosomes
Issue of 2021‒04‒18
twelve papers selected by
Nicoletta Plotegher
University of Padua


  1. Neurobiol Dis. 2021 Apr 12. pii: S0969-9961(21)00110-8. [Epub ahead of print] 105361
      The classic view of organelle cell biology is undergoing a constant revision fueled by the new insights unraveled by fluorescence nanoscopy, which enable sensitive, faster and gentler observation of specific proteins in situ. The endoplasmic reticulum (ER) is one of the most challenging structure to capture due the rapid and constant restructuring of fine sheets and tubules across the full 3D cell volume. Here we apply STED and parallelized 2D and 3D RESOLFT live imaging to uncover the tubular ER organization in the fine processes of neuronal cells with focus on mitochondria-ER contacts, which recently gained medical attention due to their role in neurodegeneration. Multi-color STED nanoscopy enables the simultaneous visualization of small transversal ER tubules crossing and constricting mitochondria all along axons and dendrites. Parallelized RESOLFT allows for dynamic studies of multiple contact sites within seconds and minutes with prolonged time-lapse imaging at ~50 nm spatial resolution. When operated in 3D super resolution mode it enables a new isotropic visualization of such contacts extending our understanding of the three-dimensional architecture of these packed structures in axons and dendrites.
    Keywords:  Endoplasmic reticulum; Mitochondria-ER contacts; RESOLFT; STED; Super resolution microscopy
    DOI:  https://doi.org/10.1016/j.nbd.2021.105361
  2. Autophagy. 2021 Apr 12. 1-16
      The WDR45 gene is localized on the X-chromosome and variants in this gene are linked to six different neurodegenerative disorders, i.e., ß-propeller protein associated neurodegeneration, Rett-like syndrome, intellectual disability, and epileptic encephalopathies including developmental and epileptic encephalopathy, early-onset epileptic encephalopathy and West syndrome and potentially also specific malignancies. WDR45/WIPI4 is a WD-repeat β-propeller protein that belongs to the WIPI (WD repeat domain, phosphoinositide interacting) family. The precise cellular function of WDR45 is still largely unknown, but deletions or conventional variants in WDR45 can lead to macroautophagy/autophagy defects, malfunctioning mitochondria, endoplasmic reticulum stress and unbalanced iron homeostasis, suggesting that this protein functions in one or more pathways regulating directly or indirectly those processes. As a result, the underlying cause of the WDR45-associated disorders remains unknown. In this review, we summarize the current knowledge about the cellular and physiological functions of WDR45 and highlight how genetic variants in its encoding gene may contribute to the pathophysiology of the associated diseases. In particular, we connect clinical manifestations of the disorders with their potential cellular origin of malfunctioning and critically discuss whether it is possible that one of the most prominent shared features, i.e., brain iron accumulation, is the primary cause for those disorders.Abbreviations: ATG/Atg: autophagy related; BPAN: ß-propeller protein associated neurodegeneration; CNS: central nervous system; DEE: developmental and epileptic encephalopathy; EEG: electroencephalograph; ENO2/neuron-specific enolase, enolase 2; EOEE: early-onset epileptic encephalopathy; ER: endoplasmic reticulum; ID: intellectual disability; IDR: intrinsically disordered region; MRI: magnetic resonance imaging; NBIA: neurodegeneration with brain iron accumulation; NCOA4: nuclear receptor coactivator 4; PtdIns3P: phosphatidylinositol-3-phosphate; RLS: Rett-like syndrome; WDR45: WD repeat domain 45; WIPI: WD repeat domain, phosphoinositide interacting.
    Keywords:  Autophagy; beta-propeller protein-associated neurodegeneration; brain iron accumulation; endoplasmic reticulum; mitochondria
    DOI:  https://doi.org/10.1080/15548627.2021.1899669
  3. Proc Natl Acad Sci U S A. 2021 Apr 20. pii: e2004253118. [Epub ahead of print]118(16):
      Mitochondrial ATP production is a well-known regulator of neuronal excitability. The reciprocal influence of plasma-membrane potential on ATP production, however, remains poorly understood. Here, we describe a mechanism by which depolarized neurons elevate the somatic ATP/ADP ratio in Drosophila glutamatergic neurons. We show that depolarization increased phospholipase-Cβ (PLC-β) activity by promoting the association of the enzyme with its phosphoinositide substrate. Augmented PLC-β activity led to greater release of endoplasmic reticulum Ca2+ via the inositol trisphosphate receptor (IP3R), increased mitochondrial Ca2+ uptake, and promoted ATP synthesis. Perturbations that decoupled membrane potential from this mode of ATP synthesis led to untrammeled PLC-β-IP3R activation and a dramatic shortening of Drosophila lifespan. Upon investigating the underlying mechanisms, we found that increased sequestration of Ca2+ into endolysosomes was an intermediary in the regulation of lifespan by IP3Rs. Manipulations that either lowered PLC-β/IP3R abundance or attenuated endolysosomal Ca2+ overload restored animal longevity. Collectively, our findings demonstrate that depolarization-dependent regulation of PLC-β-IP3R signaling is required for modulation of the ATP/ADP ratio in healthy glutamatergic neurons, whereas hyperactivation of this axis in chronically depolarized glutamatergic neurons shortens animal lifespan by promoting endolysosomal Ca2+ overload.
    Keywords:  ER Ca2+ signaling; aging; longevity; lysosomes; neuronal excitability
    DOI:  https://doi.org/10.1073/pnas.2004253118
  4. Front Endocrinol (Lausanne). 2021 ;12 660095
      Mitochondrial fission protein 1 (Fis1) was identified in yeast as being essential for mitochondrial division or fission and subsequently determined to mediate human mitochondrial and peroxisomal fission. Yet, its exact functions in humans, especially in regard to mitochondrial fission, remains an enigma as genetic deletion of Fis1 elongates mitochondria in some cell types, but not others. Fis1 has also been identified as an important component of apoptotic and mitophagic pathways suggesting the protein may have multiple, essential roles. This review presents current perspectives on the emerging functions of Fis1 and their implications in human health and diseases, with an emphasis on Fis1's role in both endocrine and neurological disorders.
    Keywords:  FIS1; apoptosis; cancer; diabetes; mitochondria; mitochondrial dynamics; mitophagy; neurodegenerative diseases
    DOI:  https://doi.org/10.3389/fendo.2021.660095
  5. Genome Med. 2021 Apr 12. 13(1): 55
      BACKGROUND: ATPase family AAA-domain containing protein 3A (ATAD3A) is a nuclear-encoded mitochondrial membrane-anchored protein involved in diverse processes including mitochondrial dynamics, mitochondrial DNA organization, and cholesterol metabolism. Biallelic deletions (null), recessive missense variants (hypomorph), and heterozygous missense variants or duplications (antimorph) in ATAD3A lead to neurological syndromes in humans.METHODS: To expand the mutational spectrum of ATAD3A variants and to provide functional interpretation of missense alleles in trans to deletion alleles, we performed exome sequencing for identification of single nucleotide variants (SNVs) and copy number variants (CNVs) in ATAD3A in individuals with neurological and mitochondrial phenotypes. A Drosophila Atad3a Gal4 knockin-null allele was generated using CRISPR-Cas9 genome editing technology to aid the interpretation of variants.
    RESULTS: We report 13 individuals from 8 unrelated families with biallelic ATAD3A variants. The variants included four missense variants inherited in trans to loss-of-function alleles (p.(Leu77Val), p.(Phe50Leu), p.(Arg170Trp), p.(Gly236Val)), a homozygous missense variant p.(Arg327Pro), and a heterozygous non-frameshift indel p.(Lys568del). Affected individuals exhibited findings previously associated with ATAD3A pathogenic variation, including developmental delay, hypotonia, congenital cataracts, hypertrophic cardiomyopathy, and cerebellar atrophy. Drosophila studies indicated that Phe50Leu, Gly236Val, Arg327Pro, and Lys568del are severe loss-of-function alleles leading to early developmental lethality. Further, we showed that Phe50Leu, Gly236Val, and Arg327Pro cause neurogenesis defects. On the contrary, Leu77Val and Arg170Trp are partial loss-of-function alleles that cause progressive locomotion defects and whose expression leads to an increase in autophagy and mitophagy in adult muscles.
    CONCLUSION: Our findings expand the allelic spectrum of ATAD3A variants and exemplify the use of a functional assay in Drosophila to aid variant interpretation.
    Keywords:  AAA+ protein; ATAD3A; Autophagy; Autosomal recessive; Disease; Drosophila; Mitochondria; Neurogenesis
    DOI:  https://doi.org/10.1186/s13073-021-00873-3
  6. J Cell Biol. 2021 Jun 07. pii: e202006043. [Epub ahead of print]220(6):
      Here, we report that acute reduction in mitochondrial translation fidelity (MTF) causes ubiquitination of the inner mitochondrial membrane (IMM) proteins, including TRAP1 and CPOX, which occurs selectively in mitochondria with a severed outer mitochondrial membrane (OMM). Ubiquitinated IMM recruits the autophagy machinery. Inhibiting autophagy leads to increased accumulation of mitochondria with severed OMM and ubiquitinated IMM. This process occurs downstream of the accumulation of cytochrome c/CPOX in a subset of mitochondria heterogeneously distributed throughout the cell ("mosaic distribution"). Formation of mosaic mitochondria, OMM severing, and IMM ubiquitination require active mitochondrial translation and mitochondrial fission, but not the proapoptotic proteins Bax and Bak. In contrast, in Parkin-overexpressing cells, MTF reduction does not lead to the severing of the OMM or IMM ubiquitination, but it does induce Drp1-independent ubiquitination of the OMM. Furthermore, high-cytochrome c/CPOX mitochondria are preferentially targeted by Parkin, indicating that in the context of reduced MTF, they are mitophagy intermediates regardless of Parkin expression. In sum, Parkin-deficient cells adapt to mitochondrial proteotoxicity through a Drp1-mediated mechanism that involves the severing of the OMM and autophagy targeting ubiquitinated IMM proteins.
    DOI:  https://doi.org/10.1083/jcb.202006043
  7. Sci Total Environ. 2021 Mar 27. pii: S0048-9697(21)01853-2. [Epub ahead of print]782 146785
      In this research, the organelle damage, apoptosis and necrosis induced by PM2.5, BC and Kaolin were studied using human bronchial epithelial (16HBE) cells. PM2.5, BC and Kaolin all induce cell death, LDH release and excess intracellular ROS generation. For the organelle injuries, Kaolin and high-dose PM2.5 (240 μg/mL) cause lysosomal acidification, but BC causes lysosomal alkalization (lysosomal membrane permeabilization, LMP). BC and Kaolin cause the loss of mitochondrial membrane potential (MMP), while PM2.5 does not. For the cell death mode, PM2.5 causes both apoptosis and necrosis. However only necrosis has been detected in the BC and Kaolin treated groups, indicating the more severe cellular insult. Excess ROS generation is involved in the organelle damage and cell death. ROS contributes to the BC-induced LMP and necrosis, but does not significantly affect the Kaolin-induced MMP loss and necrosis. Therefore, the BC component in PM2.5 may cause cytotoxicity via ROS-dependent pathways, the Kaolin component may damage cells via ROS-independent mechanisms such as strong interaction. The PM2.5-induced apoptosis and necrosis can be partially mitigated after the removal of ROS, indicating the existence of both the ROS-dependent and ROS-independent mechanisms due to the complicated PM2.5 components. BC represents the anthropogenic source component in PM2.5, while Kaolin represents the natural source component. Our results provide knowledge on the toxic mechanisms of typical PM2.5 components at the cellular and subcellular levels.
    Keywords:  Apoptosis; Lysosomal membrane permeabilization; Mitochondrial membrane potential; Necrosis; PM(2.5); Reactive oxygen species
    DOI:  https://doi.org/10.1016/j.scitotenv.2021.146785
  8. STAR Protoc. 2021 Jun 18. 2(2): 100408
      Here, we describe a protocol for comprehensive quantification of autophagosome recruitment to mitochondria as an early step in mitophagy. Data collected using this protocol can be useful in the study of neurodegenerative disease, cancer, and metabolism-related disorders using models in which co-expression of mito-GFP and mCherry-Atg8a is feasible. This protocol has the advantage of assessment in an in vivo model organism (Drosophila melanogaster), where tissue-specific mitophagy can be investigated. For complete details on the use and execution of this protocol, please refer to (Cackovic et al., 2018).
    Keywords:  Cell Biology; Microscopy; Model Organisms; Neuroscience
    DOI:  https://doi.org/10.1016/j.xpro.2021.100408
  9. Genes Dev. 2021 Apr 01. 35(7-8): 449-469
      Our cells are comprised of billions of proteins, lipids, and other small molecules packed into their respective subcellular organelles, with the daunting task of maintaining cellular homeostasis over a lifetime. However, it is becoming increasingly evident that organelles do not act as autonomous discrete units but rather as interconnected hubs that engage in extensive communication through membrane contacts. In the last few years, our understanding of how these contacts coordinate organelle function has redefined our view of the cell. This review aims to present novel findings on the cellular interorganelle communication network and how its dysfunction may contribute to aging and neurodegeneration. The consequences of disturbed interorganellar communication are intimately linked with age-related pathologies. Given that both aging and neurodegenerative diseases are characterized by the concomitant failure of multiple cellular pathways, coordination of organelle communication and function could represent an emerging regulatory mechanism critical for long-term cellular homeostasis. We anticipate that defining the relationships between interorganelle communication, aging, and neurodegeneration will open new avenues for therapeutics.
    Keywords:  aging; cellular homeostasis; communication; contact sites; endolysosomal pathway; interorganelle communication; lipid metabolism; mitochondria; neurodegeneration
    DOI:  https://doi.org/10.1101/gad.346759.120
  10. Geroscience. 2021 Apr 17.
      Mitochondria are organelles that provide energy to cells through ATP production. Mitochondrial dysfunction has long been postulated to mediate cellular declines that drive biological aging. Many well-characterized hallmarks of aging may involve underlying energetic defects that stem from loss of mitochondrial function with age. Why and how mitochondrial function declines with age is an open question and one that has been difficult to answer. Mitochondria are powered by an electrochemical gradient across the inner mitochondrial membrane known as the protonmotive force (PMF). This gradient decreases with age in several experimental models. However, it is unclear if a diminished PMF is a cause or a consequence of aging. Herein, we briefly review and define mitochondrial function, we summarize how PMF changes with age in several models, and we highlight recent studies that implicate PMF in aging biology. We also identify barriers that must be addressed for the field to progress. Emerging technology permits more precise in vivo study of mitochondria that will allow better understanding of cause and effect in metabolic models of aging. Once cause and effect can be discerned more precisely, energetics approaches to combat aging may be developed to prevent or reverse functional decline.
    Keywords:  AMPK; Autophagy; Membrane potential; Metabolism; mTOR
    DOI:  https://doi.org/10.1007/s11357-021-00365-7
  11. Front Cell Neurosci. 2021 ;15 654340
      The protective effect of Cannabidiol on Parkinson's disease (PD) has been found in recent study. However, the specific mechanism of the protective effect of Cannabidiol on PD nerve damage require further exploration. This study aims to investigate effect of Cannabidiol on MMP-induced Neural Cells (SH-SY5Y) mitochondrial dysfunction. MMP+ and Cannabidiol were used to treat SH-SY5Y cells, the cells viability was measured by MTT assay. The expression of Tyrosine hydroxylase (TH) in cells was measured by western blotting and Immunofluorescence staining. The relationship among Cannabidiol, Silent mating type information regulation 2 homolog-1 (SIRT1) and NOTCH signaling, NF-κB signaling was examined by western blotting. The effect of Cannabidiol on MMP+-induced mitochondrial dysfunction of SH-SY5Y cells was measured by western blotting. Cannabidiol alleviated loss of TH expression and cytotoxicity in the MPP+-induced SH-SY5Y cells. Further mechanistic investigation showed that Cannabidiol induced SH-SY5Y cells autophagy to protects cells from mitochondrial dysfunction by upregulating SIRT1 to Inhibits NF-κB and NOTCH Pathways. Taken together, Cannabidiol acts as a protector in PD.
    Keywords:  Cannabidiol; NF-κB; NOTCH; PD; SH-SY5Y cells; SIRT1
    DOI:  https://doi.org/10.3389/fncel.2021.654340