PLoS One. 2021 ;16(2): e0247776
Acrylamide (AA), is an important contaminant formed during food processing under high temperature. Due to its potential neurotoxicity, reproductive toxicity, hepatotoxicity, immunotoxicity, genotoxicity and carcinogenicity effects, this food contaminant has been recognized as a human health concern. Previous studies showed that acrylamide-induced toxicity is associated with active metabolite of acrylamide by cytochrome P450 enzyme, oxidative stress, mitochondrial dysfunction and DNA damage. In the current study, we investigated the role of oxidative stress in acrylamide's genotoxicity and therapeutic potential role of ellagic acid (EA) in human lymphocytes. Human lymphocytes were simultaneously treated with different concentrations of EA (10, 25 and 50 μM) and acrylamide (50 μM) for 4 h at 37°C. After 4 hours of incubation, the toxicity parameters such cytotoxicity, ROS formation, oxidized/reduced glutathione (GSH/GSSG) content, malondialdehyde (MDA) level, lysosomal membrane integrity, mitochondria membrane potential (ΔΨm) collapse and 8-hydroxy-2'-deoxyguanosine (8-OHdG) were analyzed using biochemical and flow cytometry evaluations. It has been found that acrylamide (50 μM) significantly increased cytotoxicity, ROS formation, GSH oxidation, lipid peroxidation, MMP collapse, lysosomal and DNA damage in human lymphocytes. On the other hand, cotreatment with EA (25 and 50 μM) inhibited AA-induced oxidative stress which subsequently led to decreasing of the cytotoxicity, GSH oxidation, lipid peroxidation, MMP collapse, lysosomal and DNA damage. Together, these results suggest that probably the co-exposure of EA with foods containing acrylamide could decrease mitochondrial, lysosomal and DNA damages, and oxidative stress induced by acrylamide in human body.