bims-mitlys Biomed News
on Mitochondria and Lysosomes
Issue of 2021–02–28
fourteen papers selected by
Nicoletta Plotegher, University of Padova



  1. Inhal Toxicol. 2021 Feb 25. 1-14
      Lysosomes offer a unique arrangement of degradative, exocytic, and signaling capabilities that make their continued function critical to cellular homeostasis. Lysosomes owe their function to the activity of lysosomal ion channels and transporters, which maintain concentration gradients of H+, K+, Ca2+, Na+, and Cl- across the lysosomal membrane. This review examines the contributions of lysosomal ion channels to lysosome function, showing how ion channel function is integral to degradation and autophagy, maintaining lysosomal membrane potential, controlling Ca2+ signaling, and facilitating exocytosis. Evidence of lysosome dysfunction in a variety of disease pathologies creates a need to understand how lysosomal ion channels contribute to lysosome dysfunction. For example, the loss of function of the TRPML1 Ca2+ lysosome channel in multiple lysosome storage diseases leads to lysosome dysfunction and disease pathogenesis while neurodegenerative diseases are marked by lysosome dysfunction caused by changes in ion channel activity through the TRPML1, TPC, and TMEM175 ion channels. Autoimmune disease is marked by dysregulated autophagy, which is dependent on the function of multiple lysosomal ion channels. Understanding the role of lysosomal ion channel activity in lysosome membrane permeability and NLRP3 inflammasome activation could provide valuable mechanistic insight into NLRP3 inflammasome-mediated diseases. Finally, this review seeks to show that understanding the role of lysosomal ion channels in lysosome dysfunction could give mechanistic insight into the efficacy of certain drug classes, specifically those that target the lysosome, such as cationic amphiphilic drugs.
    Keywords:  BK; Lysosome; NLRP3; TMEM175; TRPML1; autophagy; crystalline silica; lysosomal membrane permeability
    DOI:  https://doi.org/10.1080/08958378.2021.1876188
  2. Front Cell Dev Biol. 2021 ;9 614668
      Cancer cells have increased energy requirements due to their enhanced proliferation activity. This energy demand is, among others, met by mitochondrial ATP production. Since the second messenger Ca2+ maintains the activity of Krebs cycle dehydrogenases that fuel mitochondrial respiration, proper mitochondrial Ca2+ uptake is crucial for a cancer cell survival. However, a mitochondrial Ca2+ overload induces mitochondrial dysfunction and, ultimately, apoptotic cell death. Because of the vital importance of balancing mitochondrial Ca2+ levels, a highly sophisticated machinery of multiple proteins manages mitochondrial Ca2+ homeostasis. Notably, mitochondria sequester Ca2+ preferentially at the interaction sites between mitochondria and the endoplasmic reticulum (ER), the largest internal Ca2+ store, thus, pointing to mitochondrial-associated membranes (MAMs) as crucial hubs between cancer prosperity and cell death. To investigate potential regulatory mechanisms of the mitochondrial Ca2+ uptake routes in cancer cells, we modulated mitochondria-ER tethering and the expression of UCP2 and analyzed mitochondrial Ca2+ homeostasis under the various conditions. Hence, the expression of contributors to mitochondrial Ca2+ regulation machinery was quantified by qRT-PCR. We further used data from The Cancer Genome Atlas (TCGA) to correlate these in vitro findings with expression patterns in human breast invasive cancer and human prostate adenocarcinoma. ER-mitochondrial linkage was found to support a mitochondrial Ca2+ uptake route dependent on uncoupling protein 2 (UCP2) in cancer cells. Notably, combined overexpression of Rab32, a protein kinase A-anchoring protein fostering the ER-mitochondrial tethering, and UCP2 caused a significant drop in cancer cells' viability. Artificially enhanced ER-mitochondrial tethering further initiated a sudden decline in the expression of UCP2, probably as an adaptive response to avoid mitochondrial Ca2+ overload. Besides, TCGA analysis revealed an inverse expression correlation between proteins stabilizing mitochondrial-ER linkage and UCP2 in tissues of human breast invasive cancer and prostate adenocarcinoma. Based on these results, we assume that cancer cells successfully manage mitochondrial Ca2+ uptake to stimulate Ca2+-dependent mitochondrial metabolism while avoiding Ca2+-triggered cell death by fine-tuning ER-mitochondrial tethering and the expression of UCP2 in an inversed manner. Disruption of this equilibrium yields cancer cell death and may serve as a treatment strategy to specifically kill cancer cells.
    Keywords:  ER stress; cancer cells; mitochondrial Ca2+ homeostasis; mitochondrial-ER interaction; uncoupling protein 2
    DOI:  https://doi.org/10.3389/fcell.2021.614668
  3. FEBS Lett. 2021 Feb 22.
      Mitophagy is one of the selective autophagy pathways that catabolizes dysfunctional or superfluous mitochondria. Under mitophagy-inducing conditions, mitochondria are labeled with specific molecular landmarks that recruit the autophagy machinery to the surface of mitochondria, enclosed into autophagosomes, and delivered to lysosomes (vacuoles in yeast) for degradation. As damaged mitochondria are the major sources of reactive oxygen species, mitophagy is critical for mitochondrial quality control and cellular health. Moreover, appropriate control of mitochondrial quantity via mitophagy is vital for the energy supply-demand balance in cells and whole organisms, cell differentiation, and developmental programs. Thus, it seems conceivable that defects in mitophagy could elicit pleiotropic pathologies such as excess inflammation, tissue injury, neurodegeneration, and ageing. In this review, we will focus on the molecular basis and physiological relevance of mitophagy, and potential of mitophagy as a therapeutic target to overcome such disorders.
    Keywords:  adaptor; ageing; autophagy; inflammation; mitochondria; neurodegeneration; ubiquitin
    DOI:  https://doi.org/10.1002/1873-3468.14060
  4. Toxicology. 2021 Feb 19. pii: S0300-483X(21)00049-4. [Epub ahead of print] 152726
      Cadmium (Cd) is a ubiquitous environmental and occupational pollutant that is considered a high-risk factor for neurodegenerative diseases. However, the mechanism underlying Cd-induced neurotoxicity has not been fully elucidated. Abnormal mitochondrial distribution and excessive mitochondrial fission are increasingly implicated in various neurological pathologies. Herein, by exposing primary cortical neurons to Cd (10 and 100 μM) for various times (0, 6, 12, and 24 h), we observed that the rapid motility of the mitochondria in neurons progressively slowed. Many more mitochondria were transported and distributed to the somas of Cd-treated neurons. Coupled with abnormal mitochondrial distribution, Cd exposure triggered excessive mitochondrial fragmentation, followed by mitochondrial membrane potential loss and neuronal damage. However, BAPTA-AM, a chelator of cytosolic calcium ([Ca2+]c), significantly attenuated Cd-induced abnormal mitochondrial distribution and excessive mitochondrial fission, which protected against Cd-induced mitochondrial damage and neuronal toxicity. In contrast to the increase in [Ca2+]c, Cd exposure had no effect on the level of mitochondrial calcium ([Ca2+]m). Inhibiting [Ca2+]m uptake, either by ruthenium 360 (Ru360) or by knock-out of mitochondrial calcium uniporter (MCU), failed to alleviate Cd-induced mitochondrial damage and neuronal toxicity. In MCU knock-out neurons, BAPTA-AM effectively prevented Cd-induced abnormal mitochondrial distribution and excessive mitochondrial fission. Taken together, Cd exposure disrupts mitochondrial distribution and activates excessive mitochondrial fission by elevating [Ca2+]c independent of MCU-mediated mitochondrial calcium uptake, thereby leading to neurotoxicity. Chelating overloaded [Ca2+]c is a promising strategy to prevent the neurotoxicity of Cd.
    Keywords:  Cadmium; Cytosolic calcium; Mitochondrial calcium uniporter; Mitochondrial distribution; Mitochondrial fission; Neurotoxicity
    DOI:  https://doi.org/10.1016/j.tox.2021.152726
  5. Neurobiol Dis. 2021 Feb 17. pii: S0969-9961(21)00050-4. [Epub ahead of print] 105301
      Neurons are particularly vulnerable to mitochondrial dysfunction due to high energy demand and an inability to proliferate. Therefore, dysfunctional mitochondria cause various neuropathologies. Mitochondrial damage induces maintenance pathways to repair or eliminate damaged organelles. This mitochondrial quality control (MQC) system maintains appropriate morphology, localization, and removal/replacement of mitochondria to sustain brain homeostasis and counter progression of neurological disorders. Glucocorticoid release is an essential response to stressors for adaptation; however, it often culminates in maladaptation if neurons are exposed to chronic and severe stress. Long-term, high levels of glucocorticoids induce mitochondrial dysfunction via genomic and nongenomic mechanisms. Glucocorticoids induce abnormal mitochondrial morphology and dysregulate fusion and fission. Moreover, mitochondrial trafficking is arrested by glucocorticoids and dysfunctional mitochondria are subsequently accumulated around the soma. These alterations lead to energy deficiency, particularly for synaptic transmission that requires large amounts of energy. Glucocorticoids also impair mitochondrial clearance by preventing mitophagy of damaged organelle and suppress mitochondrial biogenesis, resulting in the reduced number of healthy mitochondria. Failure to maintain MQC degrades brain function and contributes to neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and Huntington's disease. However, mechanisms of glucocorticoid action on the regulation of MQC during chronic stress conditions are not well understood. The present review discusses pathways involved in the impairment of MQC and the clinical significance of high glucocorticoid blood levels for neurodegenerative diseases.
    Keywords:  Glucocorticoid; Mitochondrial biogenesis; Mitochondrial dynamics; Mitochondrial quality control (MQC); Mitochondrial trafficking; Mitophagy; Neurodegenerative disease
    DOI:  https://doi.org/10.1016/j.nbd.2021.105301
  6. J Cell Sci. 2021 Feb 23. pii: jcs.249276. [Epub ahead of print]
      A genome-wide screen recently identified SEC24A as a novel mediator of thapsigargin-induced cell death in HAP1 cells. Here, we determined the cellular mechanism and specificity of SEC24A-mediated cytotoxicity. Measurement of calcium levels using organelle-specific fluorescent indicator dyes showed that calcium efflux from endoplasmic reticulum (ER) and influx into mitochondria were significantly impaired in SEC24A knockout cells. Furthermore, SEC24A knockout cells also showed ∼44% less colocalization of mitochondria and peripheral tubular ER. Knockout of SEC24A, but not its paralogs SEC24B, SEC24C, or SEC24D, rescued HAP1 cells from cell death induced by three different inhibitors of Sarcoplasmic/Endoplasmic Reticulum Ca2+ ATPase (SERCA) but not from cell death induced by a topoisomerase inhibitor. Thapsigargin-treated SEC24A knockout cells showed a ∼2.5-fold increase in autophagic flux and ∼10-fold reduction in apoptosis compared to wild-type cells. Taken together, our findings indicate that SEC24A plays a previously unrecognized role in regulating association and calcium flux between the ER and mitochondria, thereby impacting processes dependent on mitochondrial calcium levels, including autophagy and apoptosis.
    Keywords:  Apoptosis; Autophagy; Calcium; ER stress; Mitochondrial-associated membranes; SEC24A; SERCA; Thapsigargin
    DOI:  https://doi.org/10.1242/jcs.249276
  7. Curr Drug Targets. 2021 Feb 22.
      The neuron is high energy utilizing tissue. The rate of neuronal cell respiration is higher than in other cells. The cellular respiration occurs with mitochondria. Healthy production and functions of mitochondria play a key role in the maintenances of healthy neurons. In pathological conditions such as neurodegenerative diseases, healthy mitochondria help to alleviate pathological events in neuronal cells. Conversely, mitochondrial dysfunction promotes the acceleration of the neurodegenerative process. Furthermore, glial-derived mitochondria contribute to multiple roles in the regulation of healthy neuron functions. It also supports releasing of the neurotransmitters; generation of the impulses, regulation of the membrane potential and molecular dynamics; controlling of the axonal transport; controlling of the mitochondrial fission and fusion functions in the peripheral as well as the central nervous system. Moreover, it plays a key role in the regeneration process of neuronal cells. Therefore, healthy mitochondria can provide a healthy environment for neuronal cell function and can treat neurodegenerative disorders. In this review, we explore the current view of healthy mitochondria and their role in healthy neuronal functions.
    Keywords:  Glial cell; membrane potential; mitochondrial fission; mitochondrial fusion; neurodegenerative disorder; neurotransmitter.
    DOI:  https://doi.org/10.2174/1389450122666210222163528
  8. Cell Mol Life Sci. 2021 Feb 23.
      Preservation of mitochondrial quality is paramount for cellular homeostasis. The integrity of mitochondria is guarded by the balanced interplay between anabolic and catabolic mechanisms. The removal of bio-energetically flawed mitochondria is mediated by the process of mitophagy; the impairment of which leads to the accumulation of defective mitochondria which signal the activation of compensatory mechanisms to the nucleus. This process is known as the mitochondrial retrograde response (MRR) and is enacted by Reactive Oxygen Species (ROS), Calcium (Ca2+), ATP, as well as imbalanced lipid and proteostasis. Central to this mitochondria-to-nucleus signalling are the transcription factors (e.g. the nuclear factor kappa-light-chain-enhancer of activated B cells, NF-κB) which drive the expression of genes to adapt the cell to the compromised homeostasis. An increased degree of cellular proliferation is among the consequences of the MRR and as such, engagement of mitochondrial-nuclear communication is frequently observed in cancer. Mitophagy and the MRR are therefore interlinked processes framed to, respectively, prevent or compensate for mitochondrial defects.In this review, we discuss the available knowledge on the interdependency of these processes and their contribution to cell signalling in cancer.
    Keywords:  Cell signalling and Cancer; Mitochondrial retrograde response; Mitophagy
    DOI:  https://doi.org/10.1007/s00018-021-03770-5
  9. Nat Commun. 2021 02 24. 12(1): 1158
      Niemann-Pick type C disease is a rare neurodegenerative disorder mainly caused by mutations in NPC1, resulting in abnormal late endosomal/lysosomal lipid storage. Although microgliosis is a prominent pathological feature, direct consequences of NPC1 loss on microglial function remain not fully characterized. We discovered pathological proteomic signatures and phenotypes in NPC1-deficient murine models and demonstrate a cell autonomous function of NPC1 in microglia. Loss of NPC1 triggers enhanced phagocytic uptake and impaired myelin turnover in microglia that precede neuronal death. Npc1-/- microglia feature a striking accumulation of multivesicular bodies and impaired trafficking of lipids to lysosomes while lysosomal degradation function remains preserved. Molecular and functional defects were also detected in blood-derived macrophages of NPC patients that provide a potential tool for monitoring disease. Our study underscores an essential cell autonomous role for NPC1 in immune cells and implies microglial therapeutic potential.
    DOI:  https://doi.org/10.1038/s41467-021-21428-5
  10. J Neurochem. 2020 Aug 16.
      Mitochondria are essential for neuronal function. They produce ATP to meet energy demands, regulate homeostasis of ion levels such as calcium and regulate reactive oxygen species that cause oxidative cellular stress. Mitochondria have also been shown to regulate protein synthesis within themselves, as well as within the nucleus, and also influence synaptic plasticity. These roles are especially important for neurons, which have higher energy demands and greater susceptibility to stress. Dysfunction of mitochondria has been associated with several neurodegenerative diseases, including Parkinson's disease, Alzheimer's disease, Huntington's disease, Glaucoma and Amyotrophic Lateral Sclerosis. The focus of this review is on how and why mitochondrial function is linked to the pathology of Parkinson's disease (PD). Many of the PD-linked genetic mutations which have been identified result in dysfunctional mitochondria, through a wide-spread number of mechanisms. In this review, we describe how susceptible neurons are predisposed to be vulnerable to the toxic events that occur during the neurodegenerative process of PD, and how mitochondria are central to these pathways. We also discuss ways in which proteins linked with familial PD control mitochondrial function, both physiologically and pathologically, along with their implications in genome-wide association studies and risk assessment. Finally, we review potential strategies for disease modification through mitochondrial enhancement. Ultimately, agents capable of both improving and/or restoring mitochondrial function, either alone, or in conjunction with other disease-modifying agents may halt or slow the progression of neurodegeneration in Parkinson's disease.
    Keywords:  Parkinson's disease; animal models; cell and molecular mechanisms; genetic / familial Parkinson's disease; human studies; mitochondria; mitochondria enhancers and small molecules
    DOI:  https://doi.org/10.1111/jnc.15154
  11. Autophagy. 2021 Feb 25. 1-3
      Neurons are long-lived cells that communicate via release of neurotransmitter at specialized contacts termed synapses. The maintenance of neuronal health and the regulation of synaptic function requires the efficient removal of damaged or dispensable proteins and organelles from synapses. How macroautophagy/autophagy contributes to neuronal and synaptic protein turnover, and what its main physiological substrates are in healthy neurons is largely unknown. We have now shown that loss of neuronal autophagy facilitates presynaptic neurotransmission by controlling the axonal endoplasmic reticulum and, thereby, axonal and synaptic calcium homeostasis.
    Keywords:  Autophagy; SV protein; calcium; endoplasmic reticulum; er-phagy; neurotransmission; reticulophagy; ryanodine receptor; synapse
    DOI:  https://doi.org/10.1080/15548627.2021.1893569
  12. Nat Commun. 2021 02 23. 12(1): 1252
      Upon starvation, cells rewire their metabolism, switching from glucose-based metabolism to mitochondrial oxidation of fatty acids, which require the transfer of FAs from lipid droplets (LDs) to mitochondria at mitochondria-LD membrane contact sites (MCSs). However, factors responsible for FA transfer at these MCSs remain uncharacterized. Here, we demonstrate that vacuolar protein sorting-associated protein 13D (VPS13D), loss-of-function mutations of which cause spastic ataxia, coordinates FA trafficking in conjunction with the endosomal sorting complex required for transport (ESCRT) protein tumor susceptibility 101 (TSG101). The VPS13 adaptor-binding domain of VPS13D and TSG101 directly remodels LD membranes in a cooperative manner. The lipid transfer domain of human VPS13D binds glycerophospholipids and FAs in vitro. Depletion of VPS13D, TSG101, or ESCRT-III proteins inhibits FA trafficking from LDs to mitochondria. Our findings suggest that VPS13D mediates the ESCRT-dependent remodeling of LD membranes to facilitate FA transfer at mitochondria-LD contacts.
    DOI:  https://doi.org/10.1038/s41467-021-21525-5
  13. PLoS One. 2021 ;16(2): e0247776
      Acrylamide (AA), is an important contaminant formed during food processing under high temperature. Due to its potential neurotoxicity, reproductive toxicity, hepatotoxicity, immunotoxicity, genotoxicity and carcinogenicity effects, this food contaminant has been recognized as a human health concern. Previous studies showed that acrylamide-induced toxicity is associated with active metabolite of acrylamide by cytochrome P450 enzyme, oxidative stress, mitochondrial dysfunction and DNA damage. In the current study, we investigated the role of oxidative stress in acrylamide's genotoxicity and therapeutic potential role of ellagic acid (EA) in human lymphocytes. Human lymphocytes were simultaneously treated with different concentrations of EA (10, 25 and 50 μM) and acrylamide (50 μM) for 4 h at 37°C. After 4 hours of incubation, the toxicity parameters such cytotoxicity, ROS formation, oxidized/reduced glutathione (GSH/GSSG) content, malondialdehyde (MDA) level, lysosomal membrane integrity, mitochondria membrane potential (ΔΨm) collapse and 8-hydroxy-2'-deoxyguanosine (8-OHdG) were analyzed using biochemical and flow cytometry evaluations. It has been found that acrylamide (50 μM) significantly increased cytotoxicity, ROS formation, GSH oxidation, lipid peroxidation, MMP collapse, lysosomal and DNA damage in human lymphocytes. On the other hand, cotreatment with EA (25 and 50 μM) inhibited AA-induced oxidative stress which subsequently led to decreasing of the cytotoxicity, GSH oxidation, lipid peroxidation, MMP collapse, lysosomal and DNA damage. Together, these results suggest that probably the co-exposure of EA with foods containing acrylamide could decrease mitochondrial, lysosomal and DNA damages, and oxidative stress induced by acrylamide in human body.
    DOI:  https://doi.org/10.1371/journal.pone.0247776
  14. Front Immunol. 2020 ;11 628576
      Mitochondria participate in immune regulation through various mechanisms, such as changes in the mitochondrial dynamics, as metabolic mediators of the tricarboxylic acid cycle, by the production of reactive oxygen species, and mitochondrial DNA damage, among others. In recent years, studies have shown that extracellular vesicles are widely involved in intercellular communication and exert important effects on immune regulation. Recently, the immunoregulatory effects of mitochondria from extracellular vesicles have gained increasing attention. In this article, we review the mechanisms by which mitochondria participate in immune regulation and exert immunoregulatory effects upon delivery by extracellular vesicles. We also focus on the influence of the immunoregulatory effects of mitochondria from extracellular vesicles to further shed light on the underlying mechanisms.
    Keywords:  extracellular vesicles; immune cell; immunoregulation; mesenchymal stem cells; mitochondria
    DOI:  https://doi.org/10.3389/fimmu.2020.628576