bims-mitdyn Biomed News
on Mitochondrial dynamics: mechanisms
Issue of 2023–06–25
seven papers selected by
Edmond Chan, Queen’s University, School of Medicine



  1. Science. 2023 Jun 23. 380(6651): eadh9351
      In eukaryotic cells, different organelles interact at membrane contact sites stabilized by tethers. Mitochondrial mitofusin 2 (MFN2) acts as a membrane tether that interacts with an unknown partner on the endoplasmic reticulum (ER). In this work, we identified the MFN2 splice variant ERMIT2 as the ER tethering partner of MFN2. Splicing of MFN2 produced ERMIT2 and ERMIN2, two ER-specific variants. ERMIN2 regulated ER morphology, whereas ERMIT2 localized at the ER-mitochondria interface and interacted with mitochondrial mitofusins to tether ER and mitochondria. This tethering allowed efficient mitochondrial calcium ion uptake and phospholipid transfer. Expression of ERMIT2 ameliorated the ER stress, inflammation, and fibrosis typical of liver-specific Mfn2 knockout mice. Thus, ER-specific MFN2 variants display entirely extramitochondrial MFN2 functions involved in interorganellar tethering and liver metabolic activities.
    DOI:  https://doi.org/10.1126/science.adh9351
  2. Nature. 2023 Jun 21.
      Mitochondria import nearly all of their approximately 1,000-2,000 constituent proteins from the cytosol across their double-membrane envelope1-5. Genetic and biochemical studies have shown that the conserved protein translocase, termed the TIM23 complex, mediates import of presequence-containing proteins (preproteins) into the mitochondrial matrix and inner membrane. Among about ten different subunits of the TIM23 complex, the essential multipass membrane protein Tim23, together with the evolutionarily related protein Tim17, has long been postulated to form a protein-conducting channel6-11. However, the mechanism by which these subunits form a translocation path in the membrane and enable the import process remains unclear due to a lack of structural information. Here we determined the cryo-electron microscopy structure of the core TIM23 complex (heterotrimeric Tim17-Tim23-Tim44) from Saccharomyces cerevisiae. Contrary to the prevailing model, Tim23 and Tim17 themselves do not form a water-filled channel, but instead have separate, lipid-exposed concave cavities that face in opposite directions. Our structural and biochemical analyses show that the cavity of Tim17, but not Tim23, forms the protein translocation path, whereas Tim23 probably has a structural role. The results further suggest that, during translocation of substrate polypeptides, the nonessential subunit Mgr2 seals the lateral opening of the Tim17 cavity to facilitate the translocation process. We propose a new model for the TIM23-mediated protein import and sorting mechanism, a central pathway in mitochondrial biogenesis.
    DOI:  https://doi.org/10.1038/s41586-023-06239-6
  3. Nature. 2023 Jun 19.
      Uncoupling protein 1 (UCP1) conducts protons through the inner mitochondrial membrane to uncouple mitochondrial respiration from ATP production, thereby converting the electrochemical gradient of protons into heat1,2. The activity of UCP1 is activated by endogenous fatty acids and synthetic small molecules, such as 2,4-dinitrophenol (DNP), and is inhibited by purine nucleotides, such as ATP3-5. However, the mechanism by which UCP1 binds these ligands remains elusive. Here, we present the structures of human UCP1 in the nucleotide-free state, the DNP-bound state, and the ATP-bound state. The structures show that the central cavity of UCP1 is open to the cytosolic side. DNP binds inside the cavity, making contact with TM2 and TM6. ATP also binds inside the same cavity and induces conformational changes in TM2, together with the inward bending of TM1, TM4, TM5, and TM6 of UCP1, resulting in a more compact structure of UCP1. The binding site of ATP overlaps with that of DNP, suggesting that ATP competitively blocks the functional engagement of DNP, resulting in the inhibition of the proton-conducting activity of UCP1.
    DOI:  https://doi.org/10.1038/s41586-023-06332-w
  4. Nat Commun. 2023 Jun 22. 14(1): 3716
      Accumulating evidence indicates that mitochondria play crucial roles in immunity. However, the role of the mitochondrial Krebs cycle in immunity remains largely unknown, in particular at the organism level. Here we show that mitochondrial aconitase, ACO-2, a Krebs cycle enzyme that catalyzes the conversion of citrate to isocitrate, inhibits immunity against pathogenic bacteria in C. elegans. We find that the genetic inhibition of aco-2 decreases the level of oxaloacetate. This increases the mitochondrial unfolded protein response, subsequently upregulating the transcription factor ATFS-1, which contributes to enhanced immunity against pathogenic bacteria. We show that the genetic inhibition of mammalian ACO2 increases immunity against pathogenic bacteria by modulating the mitochondrial unfolded protein response and oxaloacetate levels in cultured cells. Because mitochondrial aconitase is highly conserved across phyla, a therapeutic strategy targeting ACO2 may eventually help properly control immunity in humans.
    DOI:  https://doi.org/10.1038/s41467-023-39393-6
  5. Nat Commun. 2023 Jun 23. 14(1): 3746
      Brown adipose tissue (BAT) has abundant mitochondria with the unique capability of generating heat via uncoupled respiration. Mitochondrial uncoupling protein 1 (UCP1) is activated in BAT during cold stress and dissipates mitochondrial proton motive force generated by the electron transport chain to generate heat. However, other mitochondrial factors required for brown adipocyte respiration and thermogenesis under cold stress are largely unknown. Here, we show LETM1 domain-containing protein 1 (LETMD1) is a BAT-enriched and cold-induced protein required for cold-stimulated respiration and thermogenesis of BAT. Proximity labeling studies reveal that LETMD1 is a mitochondrial matrix protein. Letmd1 knockout male mice display aberrant BAT mitochondria and fail to carry out adaptive thermogenesis under cold stress. Letmd1 knockout BAT is deficient in oxidative phosphorylation (OXPHOS) complex proteins and has impaired mitochondrial respiration. In addition, BAT-specific Letmd1 deficient mice exhibit phenotypes identical to those observed in Letmd1 knockout mice. Collectively, we demonstrate that the BAT-enriched mitochondrial matrix protein LETMD1 plays a tissue-autonomous role that is essential for BAT mitochondrial function and thermogenesis.
    DOI:  https://doi.org/10.1038/s41467-023-39106-z
  6. EMBO Rep. 2023 Jun 19. e56399
      The protein kinase PINK1 and ubiquitin ligase Parkin promote removal of damaged mitochondria via a feed-forward mechanism involving ubiquitin (Ub) phosphorylation (pUb), Parkin activation, and ubiquitylation of mitochondrial outer membrane proteins to support the recruitment of mitophagy receptors. The ubiquitin ligase substrate receptor FBXO7/PARK15 is mutated in an early-onset parkinsonian-pyramidal syndrome. Previous studies have proposed a role for FBXO7 in promoting Parkin-dependent mitophagy. Here, we systematically examine the involvement of FBXO7 in depolarization and mt UPR-dependent mitophagy in the well-established HeLa and induced-neurons cell systems. We find that FBXO7-/- cells have no demonstrable defect in: (i) kinetics of pUb accumulation, (ii) pUb puncta on mitochondria by super-resolution imaging, (iii) recruitment of Parkin and autophagy machinery to damaged mitochondria, (iv) mitophagic flux, and (v) mitochondrial clearance as quantified by global proteomics. Moreover, global proteomics of neurogenesis in the absence of FBXO7 reveals no obvious alterations in mitochondria or other organelles. These results argue against a general role for FBXO7 in Parkin-dependent mitophagy and point to the need for additional studies to define how FBXO7 mutations promote parkinsonian-pyramidal syndrome.
    Keywords:  FBXO7; iNeurons; mitophagy; proteomics; ubiquitin ligase
    DOI:  https://doi.org/10.15252/embr.202256399
  7. J Biol Chem. 2023 Jun 16. pii: S0021-9258(23)01965-8. [Epub ahead of print] 104937
      Mitochondria are essential organelles whose proteome is well-protected by regulated protein degradation and quality control. While the ubiquitin-proteasome system can monitor mitochondrial proteins that reside at the mitochondrial outer membrane or are not successfully imported, resident proteases generally act on proteins within mitochondria. Herein, we assess the degradative pathways for mutant forms of three mitochondrial matrix proteins (mas1-1HA, mas2-11HA, and tim44-8HA) in Saccharomyces cerevisiae. The degradation of these proteins is strongly impaired by loss of either the m-AAA (Afg3p/Yta12p) or Lon (Pim1p) protease. We determine that these mutant proteins are all bona fide Pim1p substrates whose degradation is also blocked in respiratory-deficient "petite" yeast cells, such as in cells lacking m-AAA protease subunits. In contrast, matrix proteins that are substrates of the m-AAA protease are not affected by loss of respiration. The failure to efficiently remove Pim1p substrates in petite cells has no evident relationship to Pim1p maturation, localization, or assembly. However, Pim1p's auto-proteolysis is intact, and its overexpression restores substrate degradation, indicating that Pim1p retains some functionality in petite cells. Interestingly, chemical perturbation of mitochondria with oligomycin similarly prevents degradation of Pim1p substrates. Our results demonstrate that Pim1p activity is highly sensitive to mitochondrial perturbations such as loss of respiration or drug treatment in a manner that we do not observe with other proteases.
    Keywords:  ATP-dependent protease; Saccharomyces cerevisiae; mitochondria; mitochondria-associated degradation (MAD); protein turnover; quality control; respiration
    DOI:  https://doi.org/10.1016/j.jbc.2023.104937