bims-mitdyn Biomed News
on Mitochondrial dynamics: mechanisms
Issue of 2022‒08‒28
ten papers selected by
Edmond Chan
Queen’s University, School of Medicine


  1. Cell Stem Cell. 2022 Aug 19. pii: S1934-5909(22)00304-6. [Epub ahead of print]
      Skeletal muscle regeneration depends on the correct expansion of resident quiescent stem cells (satellite cells), a process that becomes less efficient with aging. Here, we show that mitochondrial dynamics are essential for the successful regenerative capacity of satellite cells. The loss of mitochondrial fission in satellite cells-due to aging or genetic impairment-deregulates the mitochondrial electron transport chain (ETC), leading to inefficient oxidative phosphorylation (OXPHOS) metabolism and mitophagy and increased oxidative stress. This state results in muscle regenerative failure, which is caused by the reduced proliferation and functional loss of satellite cells. Regenerative functions can be restored in fission-impaired or aged satellite cells by the re-establishment of mitochondrial dynamics (by activating fission or preventing fusion), OXPHOS, or mitophagy. Thus, mitochondrial shape and physical networking controls stem cell regenerative functions by regulating metabolism and proteostasis. As mitochondrial fission occurs less frequently in the satellite cells in older humans, our findings have implications for regeneration therapies in sarcopenia.
    Keywords:  Drp1; OXPHOS; aging; metabolism; mitochondria; mitochondrial dynamics; mitophagy; muscle regeneration; muscle stem cells; satellite cells
    DOI:  https://doi.org/10.1016/j.stem.2022.07.009
  2. Cell Stem Cell. 2022 Aug 19. pii: S1934-5909(22)00333-2. [Epub ahead of print]
      Quiescence regulation is essential for adult stem cell maintenance and sustained regeneration. Our studies uncovered that physiological changes in mitochondrial shape regulate the quiescent state of adult muscle stem cells (MuSCs). We show that MuSC mitochondria rapidly fragment upon an activation stimulus, via systemic HGF/mTOR, to drive the exit from deep quiescence. Deletion of the mitochondrial fusion protein OPA1 and mitochondrial fragmentation transitions MuSCs into G-alert quiescence, causing premature activation and depletion upon a stimulus. OPA1 loss activates a glutathione (GSH)-redox signaling pathway promoting cell-cycle progression, myogenic gene expression, and commitment. MuSCs with chronic OPA1 loss, leading to mitochondrial dysfunction, continue to reside in G-alert but acquire severe cell-cycle defects. Additionally, we provide evidence that OPA1 decline and impaired mitochondrial dynamics contribute to age-related MuSC dysfunction. These findings reveal a fundamental role for OPA1 and mitochondrial dynamics in establishing the quiescent state and activation potential of adult stem cells.
    Keywords:  G-alert; GSH; OPA1; ROS; adult muscle stem cells; aging; glutathione; mTOR; mitochondrial dynamics; quiescence; reactive oxygen species; stem cell activation; stem cell maintenance; systemic factors
    DOI:  https://doi.org/10.1016/j.stem.2022.07.010
  3. Proc Natl Acad Sci U S A. 2022 Aug 30. 119(35): e2116505119
      Albuminuria is a hallmark of glomerular disease of various etiologies. It is not only a symptom of glomerular disease but also a cause leading to glomerulosclerosis, interstitial fibrosis, and eventually, a decline in kidney function. The molecular mechanism underlying albuminuria-induced kidney injury remains poorly defined. In our genetic model of nephrotic syndrome (NS), we have identified CHOP (C/EBP homologous protein)-TXNIP (thioredoxin-interacting protein) as critical molecular linkers between albuminuria-induced ER dysfunction and mitochondria dyshomeostasis. TXNIP is a ubiquitously expressed redox protein that binds to and inhibits antioxidant enzyme, cytosolic thioredoxin 1 (Trx1), and mitochondrial Trx2. However, very little is known about the regulation and function of TXNIP in NS. By utilizing Chop-/- and Txnip-/- mice as well as 68Ga-Galuminox, our molecular imaging probe for detection of mitochondrial reactive oxygen species (ROS) in vivo, we demonstrate that CHOP up-regulation induced by albuminuria drives TXNIP shuttling from nucleus to mitochondria, where it is required for the induction of mitochondrial ROS. The increased ROS accumulation in mitochondria oxidizes Trx2, thus liberating TXNIP to associate with mitochondrial nod-like receptor protein 3 (NLRP3) to activate inflammasome, as well as releasing mitochondrial apoptosis signal-regulating kinase 1 (ASK1) to induce mitochondria-dependent apoptosis. Importantly, inhibition of TXNIP translocation and mitochondrial ROS overproduction by CHOP deletion suppresses NLRP3 inflammasome activation and p-ASK1-dependent mitochondria apoptosis in NS. Thus, targeting TXNIP represents a promising therapeutic strategy for the treatment of NS.
    Keywords:  CHOP; ER stress; TXNIP; Trx2; mitochondria
    DOI:  https://doi.org/10.1073/pnas.2116505119
  4. Cell Death Dis. 2022 Aug 25. 13(8): 735
      Metabolic status is essential in maintaining normal functions of hematopoietic stem cells (HSCs). However, how the dynamic of the mitochondrion, as a central organelle in metabolism, is molecularly regulated to orchestrate metabolism and HSC stemness remains to be elucidated. Here, we focus on the role of Zeb1, a well-characterized epithelial-to-mesenchymal transition (EMT) inducer which has been demonstrated to confer stem-cell-like characteristics in multiple cancer types in stemness regulation of HSCs. Using a Zeb1-tdTomato reporter mouse model, we find that Zeb1+Lin-Sca-1+c-Kit+ cells (Zeb1+-LSKs) represent a subset of functional long-term HSCs. Zeb1+LSKs exhibit a reduced reactive oxygen species (ROS) level, low mitochondrial mass, low mitochondrial membrane potential (MMP), and particularly small, round fragmented mitochondria. Of note, ectopic expression of Zeb1 leads to a fragmented mitochondrial morphology with a low mitochondrial metabolic status in EML cells. In addition, Zeb1-knockout (Zeb1-KO) LSKs from fetal liver display an exhausted stem-cell activity. Zeb1 deficiency results in elongated and tubulated mitochondria with increased mitochondrial mass, elevated MMP, and higher ROS production. Mechanistically, Zeb1 acts as a transcriptional suppressor on the key mitochondrial-fusion protein Mitofusin-2 (encoded by Mfn2). We highlight an important role of Zeb1 in the regulation of mitochondrial morphology in HSC and the metabolic control of HSC stemness by repressing Mfn2-mediated mitochondrial fusion.
    DOI:  https://doi.org/10.1038/s41419-022-05194-w
  5. Hum Mol Genet. 2022 Aug 22. pii: ddac201. [Epub ahead of print]
      Dominant mutations in ubiquitously expressed Mitofusin 2 gene (MFN2) cause Charcot-Marie-Tooth type 2A (CMT2A; OMIM 609260), an inherited sensory-motor neuropathy that affects peripheral nerve axons. Mitofusin 2 protein has been found to take part in mitochondrial fusion, mitochondria-endoplasmic reticulum tethering, mitochondrial trafficking along axons, mitochondrial quality control, and various types of cancer, in which MFN2 has been indicated as a tumor suppressor gene. Discordant data on the mitochondrial altered phenotypes in patient-derived fibroblasts harboring MFN2 mutations and in animal models have been reported. We addressed some of these issues by focusing on mitochondria behavior during autophagy and mitophagy in fibroblasts derived from a CMT2AMFN2 patient with an MFN2650G > T/C217F mutation in the GTPase domain. This study investigated mitochondrial dynamics, respiratory capacity, and autophagy/mitophagy, to tackle the multifaceted MFN2 contribution to CMT2A pathogenesis. We found that MFN2 mutated fibroblasts showed impairment of mitochondrial morphology, bioenergetics capacity, and impairment of the early stages of autophagy, but not mitophagy. Unexpectedly, transcriptomic analysis of mutated fibroblasts highlighted marked differentially expressed pathways related to cell population proliferation and extracellular matrix organization. We consistently found the activation of mTORC2/AKT signaling and accelerated proliferation in the CMT2AMFN2 fibroblasts. In conclusion, our evidence indicates that MFN2 mutation can positively drive cell proliferation in CMT2AMFN2 fibroblasts.
    DOI:  https://doi.org/10.1093/hmg/ddac201
  6. iScience. 2022 Aug 19. 25(8): 104823
      Serine hydroxymethyltransferase 2 (SHMT2), which catalyzes the conversion of serine to glycine and one-carbon transfer reactions in mitochondria, is significantly upregulated in glioblastoma (GBM). However, the mechanism by which the stability of SHMT2 gene expression is maintained to drive GBM tumorigenesis has not been clarified. Herein, through microarray screening, we identified that HOXA Transcript Antisense RNA, Myeloid-Specific 1 (HOTAIRM1) modulates the SHMT2 level in various GBM cell lines. Serine catabolism and mitochondrial oxidative phosphorylation activities were decreased by HOTAIRM1 inhibition. Mechanistically, according to our mass spectrometry and eCLIP-seq results, HOTAIRM1 can bind to PTBP1 and IGF2BP2. Furthermore, HOTAIRM1 maintains the stability of SHMT2 by promoting the recognition of an m6A site and the interaction of PTBP1/IGF2BP2 with SHMT2 mRNA. The stability of HOTAIRM1 can also be enhanced and results in positive feedback regulation to support the progression of GBM. Thus, targeting HOTAIRM1 could be a promising metabolic therapy for GBM.
    Keywords:  Cancer; Cell biology; Cellular physiology
    DOI:  https://doi.org/10.1016/j.isci.2022.104823
  7. Bio Protoc. 2022 Apr 05. 12(7): e4369
      Ultra-precise stimulation solely to individual mitochondria, without any influence to the whole cell, is quite difficult by traditional biochemical reagents. In mitophagy research, the mitochondria and even the whole cell usually suffer irreversible and great damage caused by treatment with potent chemicals. In this protocol, we present the technical procedures of our developed noninvasive ultra- precise laser stimulation (UPLaS) technology, which introduces precise stimulation to individual mitochondria, to excite mitochondrial Ca 2+ (mitoCa 2+ ) oscillations, with little perturbation to mitochondrial membrane potential (MMP), or mitochondrial reactive oxygen species (mitoROS). The mitoCa 2+ oscillation by UPLaS was able to initiate the PINK1/Parkin pathway for mitophagy. This protocol has good potential to benefit researches on mitophagy and mitochondrial diseases. Graphic abstract: Figure 1.Flowchart of the UPLaS technology.The femtosecond laser (1030 nm, 1 MHz, 220 fs) can stimulate individual mitochondria (1 μm 2 ) for a short period (0.1 s), whereas confocal microscopy (CM) provides continuous cell imaging to monitor molecular dynamics in real time, before and after UPLaS.
    Keywords:  Ca 2+; Confocal microscope; Femtosecond laser; Mitophagy; PINK1; Parkin; Ultra-precise laser stimulation
    DOI:  https://doi.org/10.21769/BioProtoc.4369
  8. EBioMedicine. 2022 Aug 19. pii: S2352-3964(22)00413-3. [Epub ahead of print]83 104231
      Apoptosis-inducing factor (AIF) is a mitochondrial intermembrane space flavoprotein with diverse functions in cellular physiology. In this regard, a large number of studies have elucidated AIF's participation to chromatin condensation during cell death in development, cancer, cardiovascular and brain disorders. However, the discovery of rare AIFM1 mutations in patients has shifted the interest of biomedical researchers towards AIF's contribution to pathogenic mechanisms underlying inherited AIFM1-linked metabolic diseases. The functional characterization of AIF binding partners has rapidly advanced our understanding of AIF biology within the mitochondria and beyond its widely reported role in cell death. At the present time, it is reasonable to assume that AIF contributes to cell survival by promoting biogenesis and maintenance of the mitochondrial oxidative phosphorylation (OXPHOS) system. With this review, we aim to outline the current knowledge around the vital role of AIF by primarily focusing on currently reported human diseases that have been linked to AIFM1 deficiency.
    Keywords:  Aapoptosis-inducing factor (AIF); CHCHD4; Mitochondria; Mitochondrial diseases; Oxidative phosphorylation (OXPHOS)
    DOI:  https://doi.org/10.1016/j.ebiom.2022.104231
  9. Curr Biol. 2022 Aug 22. pii: S0960-9822(22)01126-5. [Epub ahead of print]32(16): R891-R894
      Mitochondria are central to apoptosis, an immunologically silent form of cell death. The mitochondrial, or 'intrinsic', apoptotic pathway is activated when the permeabilized mitochondrial membrane of stressed cells releases apoptotic effectors. A new study now characterizes how mitochondria are involved in the switch from pyroptotic to necroptotic cell death.
    DOI:  https://doi.org/10.1016/j.cub.2022.07.025