bims-mitdyn Biomed News
on Mitochondrial dynamics: mechanisms
Issue of 2022‒04‒17
twenty-two papers selected by
Edmond Chan
Queen’s University, School of Medicine


  1. Nat Cell Biol. 2022 Apr 13.
      D-2-Hydroxyglutarate (D-2HG) is an α-ketoglutarate-derived mitochondrial metabolite that causes D-2-hydroxyglutaric aciduria, a devastating developmental disorder. How D-2HG adversely affects mitochondria is largely unknown. Here, we report that in Caenorhabditis elegans, loss of the D-2HG dehydrogenase DHGD-1 causes D-2HG accumulation and mitochondrial damage. The excess D-2HG leads to a build-up of 3-hydroxypropionate (3-HP), a toxic metabolite in mitochondrial propionate oxidation, by inhibiting the 3-HP dehydrogenase HPHD-1. We demonstrate that 3-HP binds the MICOS subunit MIC60 (encoded by immt-1) and inhibits its membrane-binding and membrane-shaping activities. We further reveal that dietary and gut bacteria affect mitochondrial health by modulating the host production of 3-HP. These findings identify a feedback loop that links the toxic effects of D-2HG and 3-HP on mitochondria, thus providing important mechanistic insights into human diseases related to D-2HG and 3-HP.
    DOI:  https://doi.org/10.1038/s41556-022-00883-2
  2. EMBO J. 2022 Apr 12. e109390
      Mitophagy removes defective mitochondria via lysosomal elimination. Increased mitophagy coincides with metabolic reprogramming, yet it remains unknown whether mitophagy is a cause or consequence of such state changes. The signalling pathways that integrate with mitophagy to sustain cell and tissue integrity also remain poorly defined. We performed temporal metabolomics on mammalian cells treated with deferiprone, a therapeutic iron chelator that stimulates PINK1/PARKIN-independent mitophagy. Iron depletion profoundly rewired the metabolome, hallmarked by remodelling of lipid metabolism within minutes of treatment. DGAT1-dependent lipid droplet biosynthesis occurred several hours before mitochondrial clearance, with lipid droplets bordering mitochondria upon iron chelation. We demonstrate that DGAT1 inhibition restricts mitophagy in vitro, with impaired lysosomal homeostasis and cell viability. Importantly, genetic depletion of DGAT1 in vivo significantly impaired neuronal mitophagy and locomotor function in Drosophila. Our data define iron depletion as a potent signal that rapidly reshapes metabolism and establishes an unexpected synergy between lipid homeostasis and mitophagy that safeguards cell and tissue integrity.
    Keywords:  DGAT1; iron; lipid droplet; metabolism; mitophagy
    DOI:  https://doi.org/10.15252/embj.2021109390
  3. Cell Rep. 2022 Apr 12. pii: S2211-1247(22)00387-4. [Epub ahead of print]39(2): 110635
      Circadian genes such as Clock, Bmal1, Cryptochrome1/2, and Period1/2/3 constitute the precise circadian system. ClockΔ19 is a commonly used mouse model harboring a circadian clock gene mutation, which lacks the EXON-19-encoded 51 amino acids. Previous reports have shown that ClockΔ19 mice have severe metabolic abnormalities. Here, we report that the mitochondria of ClockΔ19 mice exhibit excessive fission and dysfunction. We also demonstrate that CLOCK binds to the RNA-binding protein PUF60 through its EXON 19. Further, we find that PUF60 directly maintains mitochondrial homeostasis through regulating Drp1 mRNA stability, while the association with CLOCK can competitively inhibit this function. In ClockΔ19 mice, CLOCKΔ19 releases PUF60, leading to enhanced Drp1 mRNA stability and persistent mitochondrial fission. Our results reveal a direct post-transcriptional role of CLOCK in regulating mitochondrial homeostasis via Drp1 mRNA stability and that the loss of EXON 19 of CLOCK in ClockΔ19 mice leads to severe mitochondrial homeostasis disorders.
    Keywords:  CP: Metabolism; CP: Molecular biology; Clock; Drp1; PUF60; mRNA stability; mitochondrial fission
    DOI:  https://doi.org/10.1016/j.celrep.2022.110635
  4. Sci Adv. 2022 Apr 15. 8(15): eabk2376
      Mitochondrial quality control plays an important role in maintaining mitochondrial homeostasis and function. Disruption of mitochondrial quality control degrades brain function. We found that flunarizine (FNZ), a drug whose chronic use causes parkinsonism, led to a parkinsonism-like motor dysfunction in mice. FNZ induced mitochondrial dysfunction and decreased mitochondrial mass specifically in the brain. FNZ decreased mitochondrial content in both neurons and astrocytes, without affecting the number of nigral dopaminergic neurons. In human neural progenitor cells, FNZ also induced mitochondrial depletion. Mechanistically, independent of ATG5- or RAB9-mediated mitophagy, mitochondria were engulfed by lysosomes, followed by a vesicle-associated membrane protein 2- and syntaxin-4-dependent extracellular secretion. A genome-wide CRISPR knockout screen identified genes required for FNZ-induced mitochondrial elimination. These results reveal not only a previously unidentified lysosome-associated exocytosis process of mitochondrial quality control that may participate in the FNZ-induced parkinsonism but also a drug-based method for generating mitochondria-depleted mammal cells.
    DOI:  https://doi.org/10.1126/sciadv.abk2376
  5. Commun Biol. 2022 Apr 12. 5(1): 349
      Protein O-GlcNAcylation is increasingly recognized as an important cellular regulatory mechanism, in multiple organs including the heart. However, the mechanisms leading to O-GlcNAcylation in mitochondria and the consequences on their function remain poorly understood. In this study, we use an in vitro reconstitution assay to characterize the intra-mitochondrial O-GlcNAc system without potential cytoplasmic confounding effects. We compare the O-GlcNAcylome of isolated cardiac mitochondria with that of mitochondria acutely exposed to NButGT, a specific inhibitor of glycoside hydrolase. Amongst the 409 O-GlcNAcylated mitochondrial proteins identified, 191 display increased O-GlcNAcylation in response to NButGT. This is associated with enhanced Complex I (CI) activity, increased maximal respiration in presence of pyruvate-malate, and a striking reduction of mitochondrial ROS release, which could be related to O-GlcNAcylation of specific subunits of ETC complexes (CI, CIII) and TCA cycle enzymes. In conclusion, our work underlines the existence of a dynamic mitochondrial O-GlcNAcylation system capable of rapidly modifying mitochondrial function.
    DOI:  https://doi.org/10.1038/s42003-022-03282-3
  6. Cell Immunol. 2022 Apr 04. pii: S0008-8749(22)00040-5. [Epub ahead of print]375 104516
      Mutations causing loss of the NF-κB regulator IκBNS, result in impaired development of innate-like B cells and defective plasma cell (PC) differentiation. Since productive PC differentiation requires B cell metabolic reprogramming, we sought to investigate processes important for this transition using the bumble mouse strain, deficient for IκBNS. We report that LPS-activated bumble B cells exhibited elevated mTOR activation levels, mitochondrial accumulation, increased OXPHOS and mROS production, along with a reduced capacity for autophagy, compared to wildtype B cells. Overall, our results demonstrate that PC differentiation in the absence of IκBNS is characterized by excessive activation during early rounds of B cell division, increased mitochondrial metabolism and decreased autophagic capacity, thus improving our understanding of the role of IκBNS in PC differentiation.
    Keywords:  B cell activation; IκBNS; Mitochondrial metabolism; Plasma cell differentiation; mTOR
    DOI:  https://doi.org/10.1016/j.cellimm.2022.104516
  7. Cell Death Dis. 2022 Apr 11. 13(4): 334
      Autophagy-mediated mitochondrial degradation plays pivotal roles in both the acquisition and maintenance of pluripotency, but the molecular mechanisms that link autophagy-mediated mitochondrial homeostasis to pluripotency regulation are unclear. Here, we identified that the mitophagy receptor BNIP3 regulates pluripotency. In mouse ESCs, depletion of BNIP3 caused accumulation of aberrant mitochondria accompanied by decreased mitochondrial membrane potential, increased production of reactive oxygen species (ROS), and reduced ATP generation, which led to compromised self-renewal and differentiation. Impairment of mitophagy by knockdown of BNIP3 inhibited mitochondrial clearance during pluripotency induction, resulting in decreased reprogramming efficiency. These defects were rescued by reacquisition of wild-type but not LIR-deficient BNIP3 expression. Taken together, our findings highlight a critical role of BNIP3-mediated mitophagy in the induction and maintenance of pluripotency.
    DOI:  https://doi.org/10.1038/s41419-022-04795-9
  8. Mol Biol Cell. 2022 Apr 15. mbcE22010005
      The formin INF2 polymerizes a calcium-activated cytoplasmic network of actin filaments, which we refer to as CIA (calcium-induced actin). CIA plays important roles in multiple cellular processes, including mitochondrial dynamics and vesicle transport. Here, we show that non-muscle myosin II (NMII) is activated within 60 sec of calcium stimulation and rapidly recruited to the CIA network. Knock-out of any individual NMII in U2OS cells affects the organization of the CIA network, as well as three downstream effects: ER-to-mitochondrial calcium transfer, mitochondrial Drp1 recruitment, and mitochondrial division. Interestingly, while NMIIC is the least abundant NMII in U2OS cells (>200-fold less than NMIIA and >10-fold less than NMIIB), its knock-out is equally deleterious to CIA. Based on these results, we propose that myosin II filaments containing all three NMII heavy chains exert organizational and contractile roles in the CIA network. In addition, NMIIA knock-out causes a significant decrease in myosin regulatory light chain levels, which might have additional effects.
    DOI:  https://doi.org/10.1091/mbc.E22-01-0005
  9. Redox Biol. 2022 Apr 06. pii: S2213-2317(22)00076-3. [Epub ahead of print]52 102304
      As essential regulators of mitochondrial quality control, mitochondrial dynamics and mitophagy play key roles in maintenance of metabolic health and cellular homeostasis. Here we show that knockdown of the membrane-inserted scaffolding and structural protein caveolin-1 (Cav-1) and expression of tyrosine 14 phospho-defective Cav-1 mutant (Y14F), as opposed to phospho-mimicking Y14D, altered mitochondrial morphology, and increased mitochondrial matrix mixing, mitochondrial fusion and fission dynamics as well as mitophagy in MDA-MB-231 triple negative breast cancer cells. Further, we found that interaction of Cav-1 with mitochondrial fusion/fission machinery Mitofusin 2 (Mfn2) and Dynamin related protein 1 (Drp1) was enhanced by Y14D mutant indicating Cav-1 Y14 phosphorylation prevented Mfn2 and Drp1 translocation to mitochondria. Moreover, limiting mitochondrial recruitment of Mfn2 diminished formation of the PINK1/Mfn2/Parkin complex required for initiation of mitophagy resulting in accumulation of damaged mitochondria and ROS (mtROS). Thus, these studies indicate that phospho-Cav-1 may be an important switch mechanism in cancer cell survival which could lead to novel strategies for complementing cancer therapies.
    Keywords:  Cav-1; Dynamin-related protein 1; Mitochondrial dynamics; Mitofusin 2; Mitophagy; mtROS
    DOI:  https://doi.org/10.1016/j.redox.2022.102304
  10. Autophagy. 2022 Apr 13. 1-19
      Externalization of the phospholipid cardiolipin (CL) to the outer mitochondrial membrane has been proposed to act as a mitophagy trigger. CL would act as a signal for binding the LC3 macroautophagy/autophagy proteins. As yet, the behavior of the LC3-subfamily members has not been directly compared in a detailed way. In the present contribution, an analysis of LC3A, LC3B and LC3C interaction with CL-containing model membranes, and of their ability to translocate to mitochondria, is described. Binding of LC3A to CL was stronger than that of LC3B; both proteins showed a similar ability to colocalize with mitochondria upon induction of CL externalization in SH-SY5Y cells. Besides, the double silencing of LC3A and LC3B proteins was seen to decrease CCCP-induced mitophagy. Residues 14 and 18 located in the N-terminal region of LC3A were shown to be important for its recognition of damaged mitochondria during rotenone- or CCCP-induced mitophagy. Moreover, the in vitro results suggested a possible role of LC3A, but not of LC3B, in oxidized-CL recognition as a counterweight to excessive apoptosis activation. In the case of LC3C, even if this protein showed a stronger CL binding than LC3B or LC3A, the interaction was less specific, and colocalization of LC3C with mitochondria was not rotenone dependent. These results suggest that, at variance with LC3A, LC3C does not participate in cargo recognition during CL-mediated-mitophagy. The data support the notion that the various LC3-subfamily members might play different roles during autophagy initiation, identifying LC3A as a novel stakeholder in CL-mediated mitophagy. Abbreviations: ACTB/β-actin: actin beta; Atg8: autophagy-related 8; CL: cardiolipin; CCCP: carbonyl cyanide m-chlorophenyl hydrazone; DMSO: dimethyl sulfoxide; DOPE: 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine; DTT: DL-dithiothreitol; FKBP8: FKBP prolyl isomerase 8; GABARAP: GABA type A receptor associated protein; GABARAPL1: GABA type A receptor associated protein like 1; GABARAPL2: GABA type A receptor associated protein like 2; GFP: green fluorescent protein; IMM: inner mitochondrial membrane; LUV/LUVs: large unilamellar vesicle/s; MAP1LC3A/LC3A: microtubule associated protein 1 light chain 3 alpha; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MAP1LC3C/LC3C: microtubule associated protein 1 light chain 3 gamma; NME4/NDPK-D/Nm23-H4: NME/NM23 nucleoside diphosphate kinase 4; O/A: oligomycin A + antimycin A; OMM: outer mitochondrial membrane; PA: phosphatidic acid; PC: phosphatidylcholine; PG: phosphatidylglycerol; PINK1: PTEN induced putative kinase 1; PtdIns4P: phosphatidylinositol-4-phosphate; Rho-PE: lissamine rhodamine phosphatidylethanolamine; SUV/SUVs: small unilamellar vesicle/s.
    Keywords:  Atg8; LC3/GABARAP-protein family; autophagosome; autophagy cargo recognition; lipid oxidation; lipid-protein interaction; membrane curvature; mitochondria; negatively charged phospholipids
    DOI:  https://doi.org/10.1080/15548627.2022.2062111
  11. Cells. 2022 Mar 31. pii: 1175. [Epub ahead of print]11(7):
      CARD19 is a mitochondrial protein of unknown function. While CARD19 was originally reported to regulate TCR-dependent NF-κB activation via interaction with BCL10, this function is not recapitulated ex vivo in primary murine CD8+ T cells. Here, we employ a combination of SIM, TEM, and confocal microscopy, along with proteinase K protection assays and proteomics approaches, to identify interacting partners of CARD19 in macrophages. Our data show that CARD19 is specifically localized to the outer mitochondrial membrane. Through deletion of functional domains, we demonstrate that both the distal C-terminus and transmembrane domain are required for mitochondrial targeting, whereas the CARD is not. Importantly, mass spectrometry analysis of 3×Myc-CARD19 immunoprecipitates reveals that CARD19 interacts with the components of the mitochondrial intermembrane bridge (MIB), consisting of mitochondrial contact site and cristae organizing system (MICOS) components MIC19, MIC25, and MIC60, and MICOS-interacting proteins SAMM50 and MTX2. These CARD19 interactions are in part dependent on a properly folded CARD. Consistent with previously reported phenotypes upon siRNA silencing of MICOS subunits, absence of CARD19 correlates with irregular cristae morphology. Based on these data, we propose that CARD19 is a previously unknown interacting partner of the MIB and the MIC19-MIC25-MIC60 MICOS subcomplex that regulates cristae morphology.
    Keywords:  BinCARD; CARD proteins; CARD19; MIB; MICOS; cristae
    DOI:  https://doi.org/10.3390/cells11071175
  12. Methods Mol Biol. 2022 ;2431 409-416
      Mitochondria are essential organelles that generate energy and play vital roles in cellular metabolism. The small circular mitochondrial genome encodes key components of the mitochondrial respiratory apparatus. Depletion of, or mutations in mitochondrial DNA (mtDNA) cause mitochondrial dysfunction and disease. mtDNA is packaged into nucleoids, which are transported throughout the cell within mitochondria. Efficient transport of nucleoids is essential in neurons, where mitochondrial function is required locally at synapses. Here I describe methods for visualization of nucleoids in Drosophila neurons using a GFP fusion of the mitochondrial transcription factor TFAM. TFAM-GFP, together with mCherry-labeled mitochondria, was used to visualize nucleoids in fixed larval segmental nerves. I also describe how these tools can be used for live imaging of nucleoid dynamics. Using Drosophila as a model system, these methods will enable further characterization and analysis of nucleoid dynamics in neurons.
    Keywords:  Drosophila; Live imaging; Mitochondrial DNA; Nucleoid; TFAM
    DOI:  https://doi.org/10.1007/978-1-0716-1990-2_21
  13. Methods Mol Biol. 2022 ;2431 533-546
      Intracellular trafficking of organelles driven by molecular motors underlies essential cellular processes. Mitochondria, the powerhouses of the cell, are one of the major cargoes of molecular motors. Efficient distribution of mitochondria ensures cellular fitness while defects in this process contribute to severe pathologies, such as neurodegenerative diseases. Reconstitution of the mitochondrial microtubule-based transport in vitro in a bottom-up approach provides a powerful tool to investigate the mitochondrial trafficking machinery in a controlled environment in the absence of complex intracellular interactions. In this chapter, we describe the procedures for achieving such reconstitution of mitochondrial transport.
    Keywords:  Adaptor proteins; Interference reflection microscopy; Kinesin-1; Mitochondria; Molecular motors; Motility assay; TIRF microscopy; TRAK
    DOI:  https://doi.org/10.1007/978-1-0716-1990-2_28
  14. Methods Mol Biol. 2022 ;2431 291-310
      Mitochondria are highly dynamic organelles which form intricate networks with complex dynamics. Mitochondrial transport and distribution are essential to ensure proper cell function, especially in cells with an extremely polarised morphology such as neurons. A layer of complexity is added when considering mitochondria have their own genome, packaged into nucleoids. Major mitochondrial morphological transitions, for example mitochondrial division, often occur in conjunction with mitochondrial DNA (mtDNA) replication and changes in the dynamic behaviour of the nucleoids. However, the relationship between mtDNA dynamics and mitochondrial motility in the processes of neurons has been largely overlooked. In this chapter, we describe a method for live imaging of mitochondria and nucleoids in differentiated SH-SY5Y cells by instant structured illumination microscopy (iSIM). We also include a detailed protocol for the differentiation of SH-SY5Y cells into cells with a pronounced neuronal-like morphology and show examples of coordinated mitochondrial and nucleoid motility in the long processes of these cells.
    Keywords:  Axonal transport; Instant structured illumination microscopy (iSIM); Mitochondria; Mitochondrial DNA; Mitochondrial fission; Neuronal differentiation; Nucleoids; SH-SY5Y cells; Superresolution
    DOI:  https://doi.org/10.1007/978-1-0716-1990-2_15
  15. Methods Mol Biol. 2022 ;2431 385-407
      Precise distribution of mitochondria is essential for maintaining neuronal homeostasis. Although detailed mechanisms governing the transport of mitochondria have emerged, it is still poorly understood how the regulation of transport is coordinated in space and time within the physiological context of an organism. How alteration in mitochondrial functionality may trigger changes in organellar dynamics also remains unclear in this context. Therefore, the use of genetically encoded tools to perturb mitochondrial functionality in real time would be desirable. Here we describe methods to interfere with mitochondrial function with high spatiotemporal precision with the use of photosensitizers in vivo in the intact wing nerve of adult Drosophila. We also provide details on how to visualize the transport of mitochondria and to improve the quality of the imaging to attain super-resolution in this tissue.
    Keywords:  Axonal transport; Drosophila; Intravital imaging; KillerRed; Mitochondria; Neurons; Reactive oxygen species (ROS); Super-resolution radial fluctuations (SRRF); SuperNova
    DOI:  https://doi.org/10.1007/978-1-0716-1990-2_20
  16. Trends Biochem Sci. 2022 Apr 06. pii: S0968-0004(22)00067-6. [Epub ahead of print]
      Age-associated changes in mitochondria are closely involved in aging. Apart from the established roles in bioenergetics and biosynthesis, mitochondria are signaling organelles that communicate their fitness to the nucleus, triggering transcriptional programs to adapt homeostasis stress that is essential for organismal health and aging. Emerging studies revealed that mitochondrial-to-nuclear (mito-nuclear) communication via altered levels of mitochondrial metabolites or stress signals causes various epigenetic changes, facilitating efforts to maintain homeostasis and affect aging. Here, we summarize recent studies on the mechanisms by which mito-nuclear communication modulates epigenomes and their effects on regulating the aging process. Insights into understanding how mitochondrial metabolites serve as prolongevity signals and how aging affects this communication will help us develop interventions to promote longevity and health.
    Keywords:  UPR(mt); aging; epigenetic regulation; longevity; mitochondrial metabolites; mitochondrial–nuclear communication
    DOI:  https://doi.org/10.1016/j.tibs.2022.03.008
  17. Cell. 2022 Apr 14. pii: S0092-8674(22)00337-3. [Epub ahead of print]185(8): 1444-1444.e1
      The peroxisome proliferator-activated receptor γ coactivator-1α (Ppargc1a) gene encodes several PGC-1α isoforms that regulate mitochondrial bioenergetics and cellular adaptive processes. Expressing specific PGC-1α isoforms in mice can confer protection in different disease models. This SnapShot summarizes how regulation of Ppargc1a transcription, splicing, translation, protein stability, and activity underlies its multifaceted functions. To view this SnapShot, open or download the PDF.
    DOI:  https://doi.org/10.1016/j.cell.2022.03.027
  18. J Diabetes Res. 2022 ;2022 3555889
      Mitochondria play a central role in the development of diabetic retinopathy and in the metabolic memory associated with its continued progression. Mitochondria have a regulated fusion fission process, which is essential for their homeostasis. One of the major fission proteins, dynamin-related protein 1 (Drp1), is recruited to the mitochondria by fission protein 1 (Fis1) to initiate fragmentation. Our aim is to investigate the role of Drp1 in the altered mitochondrial dynamics in the continued progression of diabetic retinopathy. Methods. Drp1 activation, mitochondrial transport, and Drp1-Fis1 interactions were analyzed in retinal endothelial cells incubated in 20 mM glucose (HG), followed by 5 mM glucose (NG), for four days each (HG-NG group). The results were confirmed in retinal microvessels from streptozotocin-induced diabetic rats with poor glycemia (>350 mg/dl blood glucose, PC group), followed by normal glycemia (~100 mg/dl), for four months each (PC-GC group). Results. GTPase activity of Drp1, Fis1-Drp1 interactions, mitochondrial levels of Drp1, and fragmentation of the mitochondria were elevated in HG group. Mitochondrial Division Inhibitor 1 (Mdiv) or Drp1-siRNA attenuated Drp1 activation, mitochondrial fragmentation, and DNA damage. In HG-NG group, NG failed to ameliorate Drp1 activation and Drp1-Fis1 interactions, and the mitochondria remained fragmented. However, Mdiv supplementation in normal glucose, which had followed four days of high glucose (HG-NG/Mdiv group), inhibited Drp1 activation, mitochondrial fragmentation, and increase in ROS and prevented mitochondrial damage. Retinal microvessels from the rats in PC and PC-GC groups had similar Drp1 activation. Conclusion. Thus, Drp1 plays a major role in mitochondrial homeostasis in diabetic retinopathy and in the metabolic memory phenomenon associated with its continued progression. Supplementation of normal glycemia with a Drp1 inhibitor could retard development and further progression of diabetic retinopathy.
    DOI:  https://doi.org/10.1155/2022/3555889
  19. Redox Biol. 2022 Apr 05. pii: S2213-2317(22)00083-0. [Epub ahead of print]52 102311
      Imbalanced mitochondrial dynamics including inhibited mitochondrial fusion is associated with cardiac dysfunction as well as tumorigenesis. This study sought to explore the effects of promoting mitochondrial fusion on doxorubicin(Dox)-induced cardiotoxicity and its antitumor efficacy, with a focus on the underlying metabolic mechanisms. Herein, the inhibition of Mfn2-mediated mitochondrial fusion was identified as a key phenotype in Dox-induced cardiotoxicity. Restoration of Mfn2-mediated mitochondrial fusion enhanced mitochondrial oxidative metabolism, reduced cellular injury/apoptosis and inhibited mitochondria-derived oxidative stress in the Dox-treated cardiomyocytes. Application of lentivirus expressing Drp1 (mitochondrial fusion inhibitor) or Rote/Anti A (mitochondrial complex I/III inhibitors) blunted the above protective effects of Mfn2. Cardiac-specific Mfn2 transgenic mice showed preserved mitochondrial fusion and attenuated myocardial injury upon Dox exposure in vivo. The suppression of Mfn2-mediated mitochondrial fusion was induced by Dox-elicited upregulation of FoxO1, which inhibited the transcription of Mfn2 by binding to its promoter sites. In the B16 melanoma, Mfn2 upregulation not only attenuated tumor growth alone but also further delayed tumor growth in the presence of Dox. Mechanistically, Mfn2 synergized with the inhibitory action of Dox on glycolysis metabolism in the tumor cells. One common feature in both cardiomyocytes and tumor cells was that Mfn2 increased the ratio of oxygen consumption rate to extracellular acidification rate, suggesting Mfn2 triggered a shift from aerobic glycolysis to mitochondrial oxidative metabolism. In conclusion, targeting Mfn2-mediated mitochondrial fusion may provide a dual therapeutic advantage in Dox-based chemotherapy by simultaneously defending against Dox-induced cardiotoxicity and boosting its antitumor potency via metabolic shift.
    Keywords:  Doxorubicin cardiotoxicity; FoxO1; Metabolism; Mfn2; Mitochondrial fusion
    DOI:  https://doi.org/10.1016/j.redox.2022.102311
  20. Front Cell Dev Biol. 2022 ;10 858286
      The Mitofusin 2 protein (MFN2), encoded by the MFN2 gene, was first described for its role in mediating mitochondrial fusion. However, MFN2 is now recognized to play additional roles in mitochondrial autophagy (mitophagy), mitochondrial motility, lipid transfer, and as a tether to other organelles including the endoplasmic reticulum (ER) and lipid droplets. The tethering role of MFN2 is an important mediator of mitochondrial-ER contact sites (MERCs), which themselves have many important functions that regulate mitochondria, including calcium homeostasis and lipid metabolism. Exemplifying the importance of MFN2, pathogenic variants in MFN2 are established to cause the peripheral neuropathy Charcot-Marie-Tooth Disease Subtype 2A (CMT2A). However, the mechanistic basis for disease is not clear. Moreover, additional pathogenic phenotypes such as lipomatosis, distal myopathy, optic atrophy, and hearing loss, can also sometimes be present in patients with CMT2A. Given these variable patient phenotypes, and the many cellular roles played by MFN2, the mechanistic underpinnings of the cellular impairments by which MFN2 dysfunction leads to disease are likely to be complex. Here, we will review what is known about the various functions of MFN2 that are impaired by pathogenic variants causing CMT2A, with a specific emphasis on the ties between MFN2 variants and MERCs.
    Keywords:  CMT2A; MFN2; lipid homeostasis; mitochondria; mitochondrial dynamics; mitochondrial endoplasmic reticulum contact sites; mitophagy; mtDNA
    DOI:  https://doi.org/10.3389/fcell.2022.858286
  21. Elife. 2022 Apr 11. pii: e76557. [Epub ahead of print]11
      High frequencies of mutant mitochondrial DNA (mtDNA) in human cells lead to cellular defects that are associated with aging and disease. Yet much remains to be understood about the dynamics of the generation of mutant mtDNAs and their relative replicative fitness that informs their fate within cells and tissues. To address this, we utilize long-read single-molecule sequencing to track mutational trajectories of mtDNA in the model organism Saccharomyces cerevisiae. This model has numerous advantages over mammalian systems due to its much larger mtDNA and ease of artificially competing mutant and wild-type mtDNA copies in cells. We show a previously unseen pattern that constrains subsequent excision events in mtDNA fragmentation in yeast. We also provide evidence for the generation of rare and contentious non-periodic mtDNA structures that lead to persistent diversity within individual cells. Finally, we show that measurements of relative fitness of mtDNA fit a phenomenological model that highlights important biophysical parameters governing mtDNA fitness. Altogether, our study provides techniques and insights into the dynamics of large structural changes in genomes that we show are applicable to more complex organisms like humans.
    Keywords:  S. cerevisiae; computational biology; genetics; genomics; systems biology
    DOI:  https://doi.org/10.7554/eLife.76557