bims-mitdyn Biomed News
on Mitochondrial dynamics: mechanisms
Issue of 2021–09–26
eight papers selected by
Edmond Chan, Queen’s University, School of Medicine



  1. Mol Cell. 2021 Sep 16. pii: S1097-2765(21)00688-2. [Epub ahead of print]81(18): 3786-3802.e13
      Amino acids are essential building blocks of life. However, increasing evidence suggests that elevated amino acids cause cellular toxicity associated with numerous metabolic disorders. How cells cope with elevated amino acids remains poorly understood. Here, we show that a previously identified cellular structure, the mitochondrial-derived compartment (MDC), functions to protect cells from amino acid stress. In response to amino acid elevation, MDCs are generated from mitochondria, where they selectively sequester and deplete SLC25A nutrient carriers and their associated import receptor Tom70 from the organelle. Generation of MDCs promotes amino acid catabolism, and their formation occurs simultaneously with transporter removal at the plasma membrane via the multivesicular body (MVB) pathway. The combined loss of vacuolar amino acid storage, MVBs, and MDCs renders cells sensitive to high amino acid stress. Thus, we propose that MDCs operate as part of a coordinated cell network that facilitates amino acid homeostasis through post-translational nutrient transporter remodeling.
    Keywords:  MDC; Tom70; amino acid; lysosome; mitochondria; nutrient carrier; vacuole
    DOI:  https://doi.org/10.1016/j.molcel.2021.08.021
  2. Mol Cell. 2021 Sep 16. pii: S1097-2765(21)00692-4. [Epub ahead of print]81(18): 3803-3819.e7
      Mitochondrial dynamics regulated by mitochondrial fusion and fission maintain mitochondrial functions, whose alterations underline various human diseases. Here, we show that inositol is a critical metabolite directly restricting AMPK-dependent mitochondrial fission independently of its classical mode as a precursor for phosphoinositide generation. Inositol decline by IMPA1/2 deficiency elicits AMPK activation and mitochondrial fission without affecting ATP level, whereas inositol accumulation prevents AMPK-dependent mitochondrial fission. Metabolic stress or mitochondrial damage causes inositol decline in cells and mice to elicit AMPK-dependent mitochondrial fission. Inositol directly binds to AMPKγ and competes with AMP for AMPKγ binding, leading to restriction of AMPK activation and mitochondrial fission. Our study suggests that the AMP/inositol ratio is a critical determinant for AMPK activation and establishes a model in which AMPK activation requires inositol decline to release AMPKγ for AMP binding. Hence, AMPK is an inositol sensor, whose inactivation by inositol serves as a mechanism to restrict mitochondrial fission.
    Keywords:  AMP; AMPK; IMPA1; energy stress; glucose deprivation; inosiotl sensor; inositol; inositol/AMP ratio; mitochondrial fission; mitocondrial dynamics
    DOI:  https://doi.org/10.1016/j.molcel.2021.08.025
  3. Elife. 2021 Sep 21. pii: e68394. [Epub ahead of print]10
      Gene knockout of the master regulator of mitochondrial fission, Drp1, prevents neoplastic transformation. Also, mitochondrial fission and its opposing process of mitochondrial fusion are emerging as crucial regulators of stemness. Intriguingly, stem/progenitor cells maintaining repressed mitochondrial fission are primed for self-renewal and proliferation. Using our newly derived carcinogen transformed human cell model we demonstrate that fine-tuned Drp1 repression primes a slow cycling 'stem/progenitor-like state', which is characterized by small networks of fused mitochondria and a gene-expression profile with elevated functional stem/progenitor markers (Krt15, Sox2 etc) and their regulators (Cyclin E). Fine tuning Drp1 protein by reducing its activating phosphorylation sustains the neoplastic stem cell markers. Whereas, fine-tuned reduction of Drp1 protein maintains the characteristic mitochondrial shape and gene-expression of the primed 'stem/progenitor-like state' to accelerate neoplastic transformation, and more complete reduction of Drp1 protein prevents it. Therefore, our data highlights a 'goldilocks'; level of Drp1 repression supporting stem/progenitor state dependent neoplastic transformation.
    Keywords:  cancer biology; cell biology; mouse
    DOI:  https://doi.org/10.7554/eLife.68394
  4. EMBO J. 2021 Sep 20. e108648
      So-called ρ0 cells lack mitochondrial DNA and are therefore incapable of aerobic ATP synthesis. How cells adapt to survive ablation of oxidative phosphorylation remains poorly understood. Complexome profiling analysis of ρ0 cells covered 1,002 mitochondrial proteins and revealed changes in abundance and organization of numerous multiprotein complexes including previously not described assemblies. Beyond multiple subassemblies of complexes that would normally contain components encoded by mitochondrial DNA, we observed widespread reorganization of the complexome. This included distinct changes in the expression pattern of adenine nucleotide carrier isoforms, other mitochondrial transporters, and components of the protein import machinery. Remarkably, ablation of mitochondrial DNA hardly affected the complexes organizing cristae junctions indicating that the altered cristae morphology in ρ0 mitochondria predominantly resulted from the loss of complex V dimers required to impose narrow curvatures to the inner membrane. Our data provide a comprehensive resource for in-depth analysis of remodeling of the mitochondrial complexome in response to respiratory deficiency.
    Keywords:  OXPHOS; complexome profiling; mitochondria; mtDNA; rho0 cells
    DOI:  https://doi.org/10.15252/embj.2021108648
  5. Sci Rep. 2021 Sep 22. 11(1): 18863
      Vertebrate photoreceptors contain large numbers of closely-packed mitochondria which sustain the high metabolic demands of these cells. These mitochondria populations are dynamic and undergo fusion and fission events. This activity serves to maintain the population in a healthy state. In the event of mitochondrial damage, sub-domains, or indeed whole mitochondria, can be degraded and population homeostasis achieved. If this process is overwhelmed cell death may result. Death of photoreceptors contributes to loss of vision in aging individuals and is associated with many eye diseases. In this study we used serial block face scanning electron microscopy of adult Macaca fascicularis retinae to examine the 3D structure of mitochondria in rod and cone photoreceptors. We show that healthy-looking photoreceptors contain mitochondria exhibiting a range of shapes which are associated with different regions of the cell. In some photoreceptors we observe mitochondrial swelling and other changes often associated with cellular stress. In rods and cones that appear stressed we identify elongated domains of mitochondria with densely-packed normal cristae associated with photoreceptor ciliary rootlet bundles. We observe mitochondrial fission and mitochondrion fragments localised to these domains. Swollen mitochondria with few intact cristae are located towards the periphery of the photoreceptor inner-segment in rods, whilst they are found throughout the cell in cones. Swollen mitochondria exhibit sites on the mitochondrial inner membrane which have undergone complex invagination resulting in membranous, electron-dense aggregates. Membrane contact occurs between the mitochondrion and the photoreceptor plasma membrane in the vicinity of these aggregates, and a series of subsequent membrane fusions results in expulsion of the mitochondrial aggregate from the photoreceptor. These events are primarily associated with rods. The potential fate of this purged material and consequences of its clearance by retinal pigment epithelia are discussed.
    DOI:  https://doi.org/10.1038/s41598-021-98409-7
  6. Methods Mol Biol. 2022 ;2363 165-181
      Analyzing the membrane integrity and topology of a mitochondrial protein is essential for truly understanding its function. In this chapter, we demonstrate how to analyze mitochondrial membrane proteins using both an immunological-based assay and an in vivo self-assembling GFP approach. First, immunological approaches to investigate the solubility or membrane association of a protein within mitochondria are described. With this method, we demonstrate how the topology of soluble domains of a membrane-integrated protein can be determined. Using protein-specific antibodies, the localization of the soluble domains of a protein are analyzed by a proteolytic-cleavage approach using proteinase K in mitochondria, outer membrane-ruptured mitochondria, and solubilized mitochondrial membranes. In a second approach, we determine the topology of plant mitochondrial proteins using an in vivo self-assembling GFP localization approach.
    Keywords:  Carbonate extraction; In vivo GFP localization; Membrane integration; Membrane protein topology; Membrane solubilization; Mitochondrial membrane proteins; Mitoplasts; Osmotic swelling; Proteinase K digestion; Self-assembling GFP
    DOI:  https://doi.org/10.1007/978-1-0716-1653-6_13
  7. Open Biol. 2021 Sep;11(9): 210168
      The genome of mitochondria, called mtDNA, is a small circular DNA molecule present at thousands of copies per human cell. MtDNA is packaged into nucleoprotein complexes called nucleoids, and the density of mtDNA packaging affects mitochondrial gene expression. Genetic processes such as transcription, DNA replication and DNA packaging alter DNA topology, and these topological problems are solved by a family of enzymes called topoisomerases. Within mitochondria, topoisomerases are involved firstly in the regulation of mtDNA supercoiling and secondly in disentangling interlinked mtDNA molecules following mtDNA replication. The loss of mitochondrial topoisomerase activity leads to defects in mitochondrial function, and variants in the dual-localized type IA topoisomerase TOP3A have also been reported to cause human mitochondrial disease. We review the current knowledge on processes that alter mtDNA topology, how mtDNA topology is modulated by the action of topoisomerases, and the consequences of altered mtDNA topology for mitochondrial function and human health.
    Keywords:  DNA topology; mitochondria; mitochondrial DNA; mitochondrial disease; topoisomerases
    DOI:  https://doi.org/10.1098/rsob.210168
  8. Mol Cell. 2021 Sep 16. pii: S1097-2765(21)00712-7. [Epub ahead of print]81(18): 3670-3671
      Schuler et al. (2021) demonstrate that mitochondrial-derived compartments protect cells from amino acid toxicity by activation of amino acid catabolism through the Ehrlich pathway, thus highlighting the incredible plasticity of mitochondria in rewiring cellular metabolism.
    DOI:  https://doi.org/10.1016/j.molcel.2021.08.032