bims-mitdyn Biomed News
on Mitochondrial dynamics: mechanisms
Issue of 2021–02–28
fiveteen papers selected by
Edmond Chan, Queen’s University, School of Medicine



  1. Nature. 2021 Feb 24.
      The behaviour of Dictyostelium discoideum depends on nutrients1. When sufficient food is present these amoebae exist in a unicellular state, but upon starvation they aggregate into a multicellular organism2,3. This biology makes D. discoideum an ideal model for investigating how fundamental metabolism commands cell differentiation and function. Here we show that reactive oxygen species-generated as a consequence of nutrient limitation-lead to the sequestration of cysteine in the antioxidant glutathione. This sequestration limits the use of the sulfur atom of cysteine in processes that contribute to mitochondrial metabolism and cellular proliferation, such as protein translation and the activity of enzymes that contain an iron-sulfur cluster. The regulated sequestration of sulfur maintains D. discoideum in a nonproliferating state that paves the way for multicellular development. This mechanism of signalling through reactive oxygen species highlights oxygen and sulfur as simple signalling molecules that dictate cell fate in an early eukaryote, with implications for responses to nutrient fluctuations in multicellular eukaryotes.
    DOI:  https://doi.org/10.1038/s41586-021-03270-3
  2. Nature. 2021 Feb 24.
      Mitochondrial DNA double-strand breaks (mtDSBs) are toxic lesions that compromise the integrity of mitochondrial DNA (mtDNA) and alter mitochondrial function1. Communication between mitochondria and the nucleus is essential to maintain cellular homeostasis; however, the nuclear response to mtDSBs remains unknown2. Here, using mitochondrial-targeted transcription activator-like effector nucleases (TALENs)1,3,4, we show that mtDSBs activate a type-I interferon response that involves the phosphorylation of STAT1 and activation of interferon-stimulated genes. After the formation of breaks in the mtDNA, herniation5 mediated by BAX and BAK releases mitochondrial RNA into the cytoplasm and triggers a RIG-I-MAVS-dependent immune response. We further investigated the effect of mtDSBs on interferon signalling after treatment with ionizing radiation and found a reduction in the activation of interferon-stimulated genes when cells that lack mtDNA are exposed to gamma irradiation. We also show that mtDNA breaks synergize with nuclear DNA damage to mount a robust cellular immune response. Taken together, we conclude that cytoplasmic accumulation of mitochondrial RNA is an intrinsic immune surveillance mechanism for cells to cope with mtDSBs, including breaks produced by genotoxic agents.
    DOI:  https://doi.org/10.1038/s41586-021-03269-w
  3. Proc Natl Acad Sci U S A. 2021 Mar 02. pii: e2018342118. [Epub ahead of print]118(9):
      Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder characterized by progressive muscle degeneration and weakness due to mutations in the dystrophin gene. The symptoms of DMD share similarities with those of accelerated aging. Recently, hydrogen sulfide (H2S) supplementation has been suggested to modulate the effects of age-related decline in muscle function, and metabolic H2S deficiencies have been implicated in affecting muscle mass in conditions such as phenylketonuria. We therefore evaluated the use of sodium GYY4137 (NaGYY), a H2S-releasing molecule, as a possible approach for DMD treatment. Using the dys-1(eg33) Caenorhabditis elegans DMD model, we found that NaGYY treatment (100 µM) improved movement, strength, gait, and muscle mitochondrial structure, similar to the gold-standard therapeutic treatment, prednisone (370 µM). The health improvements of either treatment required the action of the kinase JNK-1, the transcription factor SKN-1, and the NAD-dependent deacetylase SIR-2.1. The transcription factor DAF-16 was required for the health benefits of NaGYY treatment, but not prednisone treatment. AP39 (100 pM), a mitochondria-targeted H2S compound, also improved movement and strength in the dys-1(eg33) model, further implying that these improvements are mitochondria-based. Additionally, we found a decline in total sulfide and H2S-producing enzymes in dystrophin/utrophin knockout mice. Overall, our results suggest that H2S deficit may contribute to DMD pathology, and rectifying/overcoming the deficit with H2S delivery compounds has potential as a therapeutic approach to DMD treatment.
    Keywords:  C. elegans; hydrogen sulfide; mitochondria; mouse; muscle
    DOI:  https://doi.org/10.1073/pnas.2018342118
  4. Cell Metab. 2021 Feb 17. pii: S1550-4131(21)00057-7. [Epub ahead of print]
      Mitochondrial respiration is critical for cell proliferation. In addition to producing ATP, respiration generates biosynthetic precursors, such as aspartate, an essential substrate for nucleotide synthesis. Here, we show that in addition to depleting intracellular aspartate, electron transport chain (ETC) inhibition depletes aspartate-derived asparagine, increases ATF4 levels, and impairs mTOR complex I (mTORC1) activity. Exogenous asparagine restores proliferation, ATF4 and mTORC1 activities, and mTORC1-dependent nucleotide synthesis in the context of ETC inhibition, suggesting that asparagine communicates active respiration to ATF4 and mTORC1. Finally, we show that combination of the ETC inhibitor metformin, which limits tumor asparagine synthesis, and either asparaginase or dietary asparagine restriction, which limit tumor asparagine consumption, effectively impairs tumor growth in multiple mouse models of cancer. Because environmental asparagine is sufficient to restore tumor growth in the context of respiration impairment, our findings suggest that asparagine synthesis is a fundamental purpose of tumor mitochondrial respiration, which can be harnessed for therapeutic benefit to cancer patients.
    Keywords:  asparaginase; asparagine; cancer metabolism; cancer treatment; dietary restriction; metformin; respiration
    DOI:  https://doi.org/10.1016/j.cmet.2021.02.001
  5. Nat Commun. 2021 02 22. 12(1): 1209
      Fructose intake has increased substantially throughout the developed world and is associated with obesity, type 2 diabetes and non-alcoholic fatty liver disease. Currently, our understanding of the metabolic and mechanistic implications for immune cells, such as monocytes and macrophages, exposed to elevated levels of dietary fructose is limited. Here, we show that fructose reprograms cellular metabolic pathways to favour glutaminolysis and oxidative metabolism, which are required to support increased inflammatory cytokine production in both LPS-treated human monocytes and mouse macrophages. A fructose-dependent increase in mTORC1 activity drives translation of pro-inflammatory cytokines in response to LPS. LPS-stimulated monocytes treated with fructose rely heavily on oxidative metabolism and have reduced flexibility in response to both glycolytic and mitochondrial inhibition, suggesting glycolysis and oxidative metabolism are inextricably coupled in these cells. The physiological implications of fructose exposure are demonstrated in a model of LPS-induced systemic inflammation, with mice exposed to fructose having increased levels of circulating IL-1β after LPS challenge. Taken together, our work underpins a pro-inflammatory role for dietary fructose in LPS-stimulated mononuclear phagocytes which occurs at the expense of metabolic flexibility.
    DOI:  https://doi.org/10.1038/s41467-021-21461-4
  6. Nat Metab. 2021 Feb;3(2): 196-210
      Ketone bodies are generated in the liver and allow for the maintenance of systemic caloric and energy homeostasis during fasting and caloric restriction. It has previously been demonstrated that neonatal ketogenesis is activated independently of starvation. However, the role of ketogenesis during the perinatal period remains unclear. Here, we show that neonatal ketogenesis plays a protective role in mitochondrial function. We generated a mouse model of insufficient ketogenesis by disrupting the rate-limiting hydroxymethylglutaryl-CoA synthase 2 enzyme gene (Hmgcs2). Hmgcs2 knockout (KO) neonates develop microvesicular steatosis within a few days of birth. Electron microscopic analysis and metabolite profiling indicate a restricted energy production capacity and accumulation of acetyl-CoA in Hmgcs2 KO mice. Furthermore, acetylome analysis of Hmgcs2 KO cells revealed enhanced acetylation of mitochondrial proteins. These findings suggest that neonatal ketogenesis protects the energy-producing capacity of mitochondria by preventing the hyperacetylation of mitochondrial proteins.
    DOI:  https://doi.org/10.1038/s42255-021-00342-6
  7. Nat Commun. 2021 02 23. 12(1): 1252
      Upon starvation, cells rewire their metabolism, switching from glucose-based metabolism to mitochondrial oxidation of fatty acids, which require the transfer of FAs from lipid droplets (LDs) to mitochondria at mitochondria-LD membrane contact sites (MCSs). However, factors responsible for FA transfer at these MCSs remain uncharacterized. Here, we demonstrate that vacuolar protein sorting-associated protein 13D (VPS13D), loss-of-function mutations of which cause spastic ataxia, coordinates FA trafficking in conjunction with the endosomal sorting complex required for transport (ESCRT) protein tumor susceptibility 101 (TSG101). The VPS13 adaptor-binding domain of VPS13D and TSG101 directly remodels LD membranes in a cooperative manner. The lipid transfer domain of human VPS13D binds glycerophospholipids and FAs in vitro. Depletion of VPS13D, TSG101, or ESCRT-III proteins inhibits FA trafficking from LDs to mitochondria. Our findings suggest that VPS13D mediates the ESCRT-dependent remodeling of LD membranes to facilitate FA transfer at mitochondria-LD contacts.
    DOI:  https://doi.org/10.1038/s41467-021-21525-5
  8. EMBO J. 2021 Feb 23. e107165
      Mitochondria contain an autonomous and spatially segregated genome. The organizational unit of their genome is the nucleoid, which consists of mitochondrial DNA (mtDNA) and associated architectural proteins. Here, we show that phase separation is the primary physical mechanism for assembly and size control of the mitochondrial nucleoid (mt-nucleoid). The major mtDNA-binding protein TFAM spontaneously phase separates in vitro via weak, multivalent interactions into droplets with slow internal dynamics. TFAM and mtDNA form heterogenous, viscoelastic structures in vitro, which recapitulate the dynamics and behavior of mt-nucleoids in vivo. Mt-nucleoids coalesce into larger droplets in response to various forms of cellular stress, as evidenced by the enlarged and transcriptionally active nucleoids in mitochondria from patients with the premature aging disorder Hutchinson-Gilford Progeria Syndrome (HGPS). Our results point to phase separation as an evolutionarily conserved mechanism of genome organization.
    Keywords:  TFAM; biomolecular condensate; genome organization; mitochondrial genome; phase separation
    DOI:  https://doi.org/10.15252/embj.2020107165
  9. J Biol Chem. 2021 Feb 18. pii: S0021-9258(21)00210-6. [Epub ahead of print] 100437
      Mitochondria maintain a distinct pool of ribosomal machinery, including tRNAs and tRNAs activating enzymes, like mitochondrial tyrosyl-tRNA synthetase (YARS2). Mutations in YARS2 which typically lead to the impairment of mitochondrial protein synthesis, have been linked to an array of human diseases including optic neuropathy. However, the lack of YARS2 mutation animal model makes us difficult to elucidate the pathophysiology underlying YARS2 deficiency. To explore this system, we generated YARS2 knockout (KO) HeLa cells and zebrafish using CRISPR/Cas9 technology. We observed the aberrant tRNATyr aminoacylation overall and reductions in the levels in mitochondrion- and nucleus-encoding subunits of oxidative phosphorylation system (OXPHOS), which were especially pronounced effects in the subunits of complex I and complex IV. These deficiencies manifested the decreased levels of intact supercomplexes overall. Immunoprecipitation assays showed that YARS2 bound to specific subunits of complex I and complex IV, suggesting the posttranslational stabilization of OXPHOS. Furthermore, YARS2 ablation caused defects in the stability and activities of OXPHOS complexes. These biochemical defects could be rescued by the overexpression of YARS2 cDNA in the YARS2KO cells. In zebrafish, the yars2KO larva conferred deficient COX activities in the retina, abnormal mitochondrial morphology and numbers in the photoreceptor and retinal ganglion cells. The zebrafish further exhibited the retinal defects affecting both rods and cones. Vision defects in yars2KO zebrafish recapitulated the clinical phenotypes in the optic neuropathy patients carrying the YARS2 mutations. Our findings highlighted the critical role of YARS2 in the stability and activity of OXPHOS and its pathological consequence in vision impairments.
    Keywords:  Mitochondrial tyrosyl-tRNA synthetase; animal disease model; oxidative phosphorylation; retina; vision function
    DOI:  https://doi.org/10.1016/j.jbc.2021.100437
  10. J Cell Sci. 2021 Feb 23. pii: jcs.249276. [Epub ahead of print]
      A genome-wide screen recently identified SEC24A as a novel mediator of thapsigargin-induced cell death in HAP1 cells. Here, we determined the cellular mechanism and specificity of SEC24A-mediated cytotoxicity. Measurement of calcium levels using organelle-specific fluorescent indicator dyes showed that calcium efflux from endoplasmic reticulum (ER) and influx into mitochondria were significantly impaired in SEC24A knockout cells. Furthermore, SEC24A knockout cells also showed ∼44% less colocalization of mitochondria and peripheral tubular ER. Knockout of SEC24A, but not its paralogs SEC24B, SEC24C, or SEC24D, rescued HAP1 cells from cell death induced by three different inhibitors of Sarcoplasmic/Endoplasmic Reticulum Ca2+ ATPase (SERCA) but not from cell death induced by a topoisomerase inhibitor. Thapsigargin-treated SEC24A knockout cells showed a ∼2.5-fold increase in autophagic flux and ∼10-fold reduction in apoptosis compared to wild-type cells. Taken together, our findings indicate that SEC24A plays a previously unrecognized role in regulating association and calcium flux between the ER and mitochondria, thereby impacting processes dependent on mitochondrial calcium levels, including autophagy and apoptosis.
    Keywords:  Apoptosis; Autophagy; Calcium; ER stress; Mitochondrial-associated membranes; SEC24A; SERCA; Thapsigargin
    DOI:  https://doi.org/10.1242/jcs.249276
  11. Hum Mol Genet. 2021 Feb 25. pii: ddab057. [Epub ahead of print]
      Inactivation of constitutive autophagy results in the formation of cytoplasmic inclusions in neurons, but the relationship between impaired autophagy and Lewy bodies (LBs) remains unknown. α-Synuclein and p62, components of LBs, are the defining characteristic of Parkinson's disease (PD). Until now, we have analyzed mice models and demonstrated p62 aggregates derived from an autophagic defect might serve as 'seeds' and can potentially be cause of LBs formation. P62 may be the key molecule for aggregate formation. To understand the mechanisms of LBs, we analyzed p62 homeostasis and inclusions formation using PD model mice. In PARK22-linked PD, intrinsically disordered mutant CHCHD2 initiates Lewy pathology. To determine the function of CHCHD2 for inclusions formation, we generated Chchd2-knockout (KO) mice and characterised the age-related pathological and motor phenotypes. Chchd2 KO mice exhibited p62 inclusion formation and dopaminergic neuronal loss in an age-dependent manner. These changes were associated with a reduction in mitochondria complex activity and abrogation of inner mitochondria structure. In particular, the OPA1 proteins, which regulate fusion of mitochondrial inner membranes, were immature in the mitochondria of CHCHD2 deficient mice. CHCHD2 regulates mitochondrial morphology and p62 homeostasis by controlling the level of OPA1. Our findings highlight the unexpected role of the homeostatic level of p62, which is regulated by a non-autophagic system, in controlling intracellular inclusion body formation, and indicate that the pathologic processes associated with the mitochondrial proteolytic system are crucial for loss of DA neurones.
    DOI:  https://doi.org/10.1093/hmg/ddab057
  12. FEBS Lett. 2021 Feb 22.
      Mitophagy is one of the selective autophagy pathways that catabolizes dysfunctional or superfluous mitochondria. Under mitophagy-inducing conditions, mitochondria are labeled with specific molecular landmarks that recruit the autophagy machinery to the surface of mitochondria, enclosed into autophagosomes, and delivered to lysosomes (vacuoles in yeast) for degradation. As damaged mitochondria are the major sources of reactive oxygen species, mitophagy is critical for mitochondrial quality control and cellular health. Moreover, appropriate control of mitochondrial quantity via mitophagy is vital for the energy supply-demand balance in cells and whole organisms, cell differentiation, and developmental programs. Thus, it seems conceivable that defects in mitophagy could elicit pleiotropic pathologies such as excess inflammation, tissue injury, neurodegeneration, and ageing. In this review, we will focus on the molecular basis and physiological relevance of mitophagy, and potential of mitophagy as a therapeutic target to overcome such disorders.
    Keywords:  adaptor; ageing; autophagy; inflammation; mitochondria; neurodegeneration; ubiquitin
    DOI:  https://doi.org/10.1002/1873-3468.14060
  13. Biochim Biophys Acta Mol Basis Dis. 2021 Feb 19. pii: S0925-4439(21)00037-5. [Epub ahead of print] 166104
      Depolarized/damaged mitochondria aggregate at the perinuclear region prior to mitophagy in cells treated with mitochondrial stressors. However, the cellular mechanism(s) by which damaged mitochondria are transported and remain aggregated at the perinuclear region is unknown. Here, we demonstrate that mitofusins (Mfn1/2) are post-translationally modified by SUMO2 (Small Ubiquitin-related Modifier 2) in Human embryonic kidney 293 (Hek293) cells treated with protonophore CCCP and proteasome inhibitor MG132, both known mitochondrial stressors. SUMOylation of Mfn1/2 is not for their proteasomal degradation but facilitate mitochondrial congression at the perinuclear region in CCCP- and MG132-treated cells. Additionally, congressed mitochondria (mito-aggresomes) colocalize with LC3, ubiquitin, and SUMO2 in CCCP-treated cells. Knowing that SUMO functions as a "molecular glue" to facilitate protein-protein interactions, we propose that SUMOylation of Mfn1/2 may congress, glues, and confines damaged mitochondria to the perinuclear region thereby, protectively quarantining them from the heathy mitochondrial network until their removal via mitophagy in cells.
    Keywords:  26S Proteasome; Autophagy; Mitochondria; Mitofusin; Mitophagy; Small Ubiquitin Modifier (SUMO); ubiquitin
    DOI:  https://doi.org/10.1016/j.bbadis.2021.166104
  14. Metabolism. 2021 Feb 22. pii: S0026-0495(21)00033-0. [Epub ahead of print] 154733
      It is well-established that mitochondria are the powerhouses of the cell, producing adenosine triphosphate (ATP), the universal energy currency. However, the most significant strengths of the electron transport chain (ETC), its intricacy and efficiency, are also its greatest downfalls. A reliance on metal complexes (FeS clusters, hemes), lipid moities such as cardiolipin, and cofactors including alpha-lipoic acid and quinones render oxidative phosphorylation vulnerable to environmental toxins, intracellular reactive oxygen species (ROS) and fluctuations in diet. To that effect, it is of interest to note that temporal disruptions in ETC activity in most organisms are rarely fatal, and often a redundant number of failsafes are in place to permit continued ATP production when needed. Here, we highlight the metabolic reconfigurations discovered in organisms ranging from parasitic Entamoeba to bacteria such as pseudomonads and then complex eukaryotic systems that allow these species to adapt to and occasionally thrive in harsh environments. The overarching aim of this review is to demonstrate the plasticity of metabolic networks and recognize that in times of duress, life finds a way.
    Keywords:  ATP; Energy; Metabolic reconfiguration; Metabolism; Mitochondrial dysfunction
    DOI:  https://doi.org/10.1016/j.metabol.2021.154733