bims-mitdis Biomed News
on Mitochondrial disorders
Issue of 2025–03–02
sixty-one papers selected by
Catalina Vasilescu, Helmholz Munich



  1. Chin Med J (Engl). 2025 Feb 26.
       ABSTRACT: In recent years, the roles of mitochondrial RNA and its associated human diseases have been reported to increase significantly. Treatments based on mtRNA metabolic processes and nuclear gene mutations are thus discussed. The mitochondrial oxidative phosphorylation process is affected by mtRNA metabolism, including mtRNA production, maturation, stabilization, and degradation, which leads to a variety of inherited human mitochondrial diseases. Moreover, mitochondrial diseases are caused by mitochondrial messenger RNA, mitochondrial transfer RNA, and mitochondrial ribosomal RNA gene mutations. This review presents the molecular mechanisms of human mtRNA metabolism and pathological mutations in mtRNA metabolism-related nuclear-encoded/nonencoded genes and mitochondrial DNA mutations to highlight the importance of mitochondrial RNA-related diseases and treatments.
    DOI:  https://doi.org/10.1097/CM9.0000000000003516
  2. Nat Commun. 2025 Feb 26. 16(1): 1982
      Dysregulation of mitochondrial function has been implicated in Parkinson's disease (PD), but the role of mitochondrial metabolism in disease pathogenesis remains to be elucidated. Using an unbiased metabolomic analysis of purified mitochondria, we identified alterations in α-ketoglutarate dehydrogenase (KGDH) pathway upon loss of PD-linked CHCHD2 protein. KGDH, a rate-limiting enzyme complex in the tricarboxylic acid cycle, was decreased in CHCHD2-deficient male mouse brains and human dopaminergic neurons. This deficiency of KGDH led to elevated α-ketoglutarate and increased lipid peroxidation. Treatment of CHCHD2-deficient dopaminergic neurons with lipoic acid, a KGDH cofactor and antioxidant agent, resulted in decreased levels of lipid peroxidation and phosphorylated α-synuclein. CHCHD10, a close homolog of CHCHD2 that is primarily linked to amyotrophic lateral sclerosis/frontotemporal dementia, did not affect the KGDH pathway or lipid peroxidation. Together, these results identify KGDH metabolic pathway as a targetable mitochondrial mechanism for correction of increased lipid peroxidation and α-synuclein in Parkinson's disease.
    DOI:  https://doi.org/10.1038/s41467-025-57142-9
  3. Mol Ther Nucleic Acids. 2025 Mar 11. 36(1): 102449
      Gene therapy approaches for mitochondrial DNA (mtDNA)-associated damage/diseases have thus far been limited, and despite advancements in single gene therapy for mtDNA mutations and progress in mitochondrial transplantation, no method exists for restoring the entire mtDNA molecule in a clinically translatable manner. Here, we present for the first time a strategy to deliver an exogenous, fully intact, and healthy mtDNA template into cells to correct endogenous mtDNA mutations and deletions, with the potential to be developed into an efficient pan-therapy for inherited and/or acquired mtDNA disorders. More specifically, the novel therapeutic nanoparticle complex used in our study was generated by combining a cell-penetrating peptide (CPP) with purified mtDNA, in conjunction with a mitochondrial targeting reagent. The generated nanoparticle complexes were found to be taken up by cells and localized to mitochondria, with exogenous mtDNA retention/maintenance, along with mitochondrial RNA and protein production, observed in mitochondria-depleted ARPE-19 cells at least 4 weeks following a single treatment. These data demonstrate the feasibility of restoring mtDNA in cells via a CPP carrier, with the therapeutic potential to correct mtDNA damage independent of the number of gene mutations found within the mtDNA.
    Keywords:  MT: Delivery Strategies; age-related diseases; cell-penetrating peptide; mitochondria; mitochondrial DNA; mitochondrial transplantation; mtDNA; mtDNA gene therapy; mtDNA mutations; nucleic acid delivery
    DOI:  https://doi.org/10.1016/j.omtn.2025.102449
  4. Res Sq. 2025 Feb 14. pii: rs.3.rs-5961609. [Epub ahead of print]
      Mitochondria are a diverse family of organelles that specialize to accomplish complimentary functions 1-3. All mitochondria share general features, but not all mitochondria are created equal 4.Here we develop a quantitative pipeline to define the degree of molecular specialization among different mitochondrial phenotypes - or mitotypes. By distilling hundreds of validated mitochondrial genes/proteins into 149 biologically interpretable MitoPathway scores (MitoCarta 3.0 5) the simple mitotyping pipeline allows investigators to quantify and interpret mitochondrial diversity and plasticity from transcriptomics or proteomics data across a variety of natural and experimental contexts. We show that mouse and human multi-organ mitotypes segregate along two main axes of mitochondrial specialization, contrasting anabolic (liver) and catabolic (brain) tissues. In cultured primary human fibroblasts exhibiting robust time-dependent and treatment-induced metabolic plasticity 6-8, we demonstrate how the mitotype of a given cell type recalibrates i) over time in parallel with hallmarks of aging, and ii) in response to genetic, pharmacological, and metabolic perturbations. Investigators can now use MitotypeExplorer.org and the associated code to visualize, quantify and interpret the multivariate space of mitochondrial biology.
    DOI:  https://doi.org/10.21203/rs.3.rs-5961609/v1
  5. Yonsei Med J. 2025 Mar;66(3): 131-140
      Mitochondrial diseases (MDs) are genetic disorders with diverse phenotypes that affect high-energy-demand organs, notably the central nervous system and muscles. Epilepsy is a common comorbidity, affecting 40%-60% of patients with MDs and significantly reducing their quality of life. This review discusses the different treatment modalities for epilepsy in patients with MDs. Advances in genetic sequencing have identified specific mutations in mitochondrial and nuclear DNA, enabling more precise diagnoses and tailored therapeutic strategies. Anti-seizure medications and dietary interventions, such as ketogenic diets and their variants, have been effective in reducing seizures and improving mitochondrial function. Emerging treatments include gene therapy, mitochondrial transplantation, and antioxidants such as EPI-743, which protect mitochondrial integrity and improve neurological function. Additionally, therapies that promote mitochondrial biogenesis, such as bezafibrate and epicatechin, are being explored for their potential to enhance mitochondrial proliferation and energy production. Gene therapy aims to correct genetic defects underlying MDs. Techniques like mitochondrial gene replacement and using viral vectors to deliver functional genes have shown promise in preclinical studies. Mitochondrial transplantation, an emerging experimental technique, involves transferring healthy mitochondria into cells with dysfunctional mitochondria. This technique has been demonstrated to restore mitochondrial function and energy metabolism in preclinical models. Patient-derived induced pluripotent stem cells can model specific mitochondrial dysfunctions in vitro, allowing for the testing of various treatments tailored to individual genetic and biochemical profiles. The future of mitochondrial medicine is promising, with the development of more targeted and personalized therapeutic strategies offering hope for improved management and prognosis of mitochondrial epilepsy.
    Keywords:  Mitochondrial diseases; antioxidants; epilepsy; gene therapy; ketogenic diet
    DOI:  https://doi.org/10.3349/ymj.2024.0325
  6. Cell Metab. 2025 Feb 20. pii: S1550-4131(25)00017-8. [Epub ahead of print]
      Mitochondrial proteins assemble dynamically in high molecular weight complexes essential for their functions. We generated and validated two searchable compendia of these mitochondrial complexes. Following identification by mass spectrometry of proteins in complexes separated using blue-native gel electrophoresis from unperturbed, cristae-remodeled, and outer membrane-permeabilized mitochondria, we created MARIGOLD, a mitochondrial apoptotic remodeling complexome database of 627 proteins. MARIGOLD elucidates how dynamically proteins distribute in complexes upon mitochondrial membrane remodeling. From MARIGOLD, we developed MitoCIAO, a mitochondrial complexes interactome tool that, by statistical correlation, calculates the likelihood of protein cooccurrence in complexes. MitoCIAO correctly predicted biologically validated interactions among components of the mitochondrial cristae organization system (MICOS) and optic atrophy 1 (OPA1) complexes. We used MitoCIAO to functionalize two ATPase family AAA domain-containing 3A (ATAD3A) complexes: one with OPA1 that regulates mitochondrial ultrastructure and the second containing ribosomal proteins that is essential for mitoribosome stability. These compendia reveal the dynamic nature of mitochondrial complexes and enable their functionalization.
    Keywords:  ATAD3A; OPA1; cristae remodeling; interactome; mitochondria; mitochondrial complexes; mitoribosome stability
    DOI:  https://doi.org/10.1016/j.cmet.2025.01.017
  7. Biomolecules. 2025 Feb 05. pii: 229. [Epub ahead of print]15(2):
      Mitochondria play a crucial role in human biology, affecting cellular processes at the smallest spatial scale as well as those involved in the functionality of the whole system. Imaging is the most important research tool for studying the fundamental role of mitochondria across these diverse spatial scales. A wide array of available imaging techniques have enabled us to visualize mitochondrial structure and behavior, as well as their effect on cells and tissues in a range from micrometers to centimeters. Each of the various imaging techniques that are available offers unique advantages tailored to specific research needs. Selecting an appropriate technique suitable for the scale and application of interest is therefore crucial, but can be challenging due to the large range of possibilities. The aim of this review is two-fold. First, we provide an overview of the available imaging techniques and discuss their strengths and limitations for applications across the sub-mitochondrial, cellular, tissue and organ levels for the imaging of mitochondria. Second, we identify opportunities for novel applications and advancement in the field. We emphasize the importance of integration across scales in mitochondrial imaging studies, particularly to bridge the gap between microscopic and non-invasive techniques. While integrating these diverse scales is challenging, primarily because such multi-scale approaches require expertise that spans different imaging modalities, we argue that integration has the potential to provide groundbreaking insights into mitochondrial biology. By providing a comprehensive overview of imaging techniques, this review paves the way for multi-scale imaging initiatives in mitochondrial research.
    Keywords:  MRI; imaging; microscopy; mitochondria
    DOI:  https://doi.org/10.3390/biom15020229
  8. bioRxiv. 2025 Feb 16. pii: 2025.02.13.637960. [Epub ahead of print]
      The compartmentalization of eukaryotic cells into membrane-bound organelles with specific subcellular positioning enables precise spatial and temporal control of cellular functions. While functionally significant mitochondrial localization has been demonstrated in cells such as neurons, it remains unclear how general these cell principles are. Here, we examine the spatial organization of mitochondria within MIN6 pancreatic beta cells under variable glucose conditions. We observe glucose-dependent redistributions of mitochondria, favoring peripheral localization at elevated glucose levels when insulin secretion is also elevated. Our results suggest that active mitochondrial transport along microtubules and calcium activity, but not ATP synthesis, are critical regulators of this redistribution. We derived a mathematical model that reveals a putative affinity of the mitochondria for cellular membranes competes with mitochondrial microtubule attachment to play an important role in establishing the mitochondrial spatial patterns we observe. These results suggest that mitochondrial positioning may contribute to optimizing energy delivery in response to local demand, potentially representing a general regulatory mechanism across various cell types.
    DOI:  https://doi.org/10.1101/2025.02.13.637960
  9. Case Rep Med. 2025 ;2025 1823517
      Infantile reversible cytochrome c oxidase (COX) deficiency myopathy is a mitochondrial rare disease with onset age of first day to three months with symptoms of generalized muscle weakness and severe hypotonia. Despite its initial serious conditions, the symptoms may improve spontaneously later in their life, with the so-called "benign" myopathy accordingly. This benign mitochondrial myopathy might be improved in their later life, which is different from most mitochondrial myopathies with progression by age. Therefore, we depicted the rare case of her clinical course during our medical practice, anticipating to provide more information of this rare disease.
    Keywords:  benign COX deficiency myopathy; cytochrome C oxidase; mitochondria
    DOI:  https://doi.org/10.1155/carm/1823517
  10. Genes (Basel). 2025 Feb 05. pii: 198. [Epub ahead of print]16(2):
       BACKGROUND: The nuclear-encoded enzyme polymerase gamma (Pol-γ) is crucial in the replication of the mitochondrial genome (mtDNA), which in turn is vital for mitochondria and hence numerous metabolic processes and energy production in eukaryotic cells. Variants in the POLG gene, which encodes the catalytic subunit of Pol-γ, can significantly impair Pol-γ enzyme function. Pol-γ-associated disorders are referred to as POLG-spectrum disorders (POLG-SDs) and are mainly autosomal-recessively inherited. Clinical manifestations include muscle weakness and fatigue, and severe forms of the disease can lead to premature death in infancy, childhood, and early adulthood, often associated with seizures, liver failure, or intractable epilepsy. Here, we analyzed fibroblasts from a compound heterozygous patient with the established pathogenic variant c.2419C>T; p.(Arg807Cys) and a previously undescribed variant c.678G>C; p.(Gln226His) with a clinical manifestation compatible with POLG-SDs, sensory ataxic neuropathy, and infantile muscular atrophy. We conducted a battery of functional studies for Pol-γ and mitochondrial dysfunction on the patient's fibroblasts, to test whether the novel variant c.678G>C; p.(Gln226His) may be causative in human disease.
    AIMS/METHODS: We analyzed skin-derived fibroblasts in comparison to a first-degree relative (the mother of the patient), an asymptomatic carrier harboring only the established c.2419C>T; p.(Arg807Cys) mutation. Assessments of mitochondrial function included measurements of mtDNA content, mRNA levels of mitochondrial genes, mitochondrial mass, and mitochondrial morphology.
    CASE PRESENTATION AND RESULTS: A 13-year-old male presented with symptoms starting at three years of age, including muscle weakness and atrophy in the lower extremities and facial muscles, which later extended to the upper limbs, voice, and back muscles, without further progression. The patient also reported fatigue and muscle pain after physical activity, with no sensory deficits. Extensive diagnostic tests such as electromyography, nerve conduction studies, muscle biopsy, and MRI were unremarkable. Exome sequencing revealed that he carried the compound heterozygous variants in POLG c.678G>C; p.(Gln226His) and c.2419C>T; p.(Arg807Cys), but no other potential genetic pathogenic causes. In comparison to a first-degree relative (his mother) who only carried the c.2419C>T; p.(Arg807Cys) pathogenic mutation, in vitro analyses revealed a significant reduction in mtDNA content (~50%) and mRNA levels of mtDNA-encoded proteins. Mitochondrial mass was reduced by approximately 20%, and mitochondrial interconnectivity within cells was impaired, as determined by fluorescence microscopy and mitochondrial staining.
    CONCLUSIONS: Our findings suggest that the c.678G>C; p.(Gln226His) variant, in conjunction with the c.2419C>T; p.(Arg807Cys) mutation, may compromise mtDNA replication and mitochondrial function and could result in clinically significant mitochondriopathy. As this study is based on one patient compared to a first-degree relative (but with an identical mitochondrial genome), the pathogenicity of c.678G>C; p.(Gln226His) of POLG should be confirmed in future studies, in particular, in conjunction with other POLG-variants.
    Keywords:  Alpers-Huttenlocher syndrome; mitochondriopathy; mtDNA copy number; mtDNA depletion; polymerase-gamma; rare disease; spinal muscular atrophy
    DOI:  https://doi.org/10.3390/genes16020198
  11. Antioxidants (Basel). 2025 Feb 12. pii: 211. [Epub ahead of print]14(2):
      Mitochondrial diseases are complex disorders caused by nuclear or mitochondrial DNA mutations, leading to oxidative phosphorylation deficiency and excessive production of reactive oxygen species (ROS). While ROS have been well established in the pathogenesis of these diseases, the role of reactive nitrogen species (RNS) remains unclear. In this study, we performed a quantitative analysis of muscle fibers to investigate the relationship between protein nitration and mitochondrial abnormalities (mitochondrial proliferation and cytochrome-c oxidase (COX) deficiency) and factors like genotype, muscle damage, and age. A total of 1961 muscle fibers (303 from 4 controls and 1658 from 29 patients with mitochondrial diseases) were analyzed by immunostaining for nitro-tyrosine. Contrary to previous findings, which identified nitro-tyrosine only in small muscle vessels, we observed a broader distribution affecting the sarcolemma and sarcoplasm. Using multivariate techniques, we identified a significant correlation between protein nitration and mitochondrial proliferation but found no associations with COX deficiency, age, muscle damage, or genotype. These findings suggest that nitrative stress may contribute to mitochondrial dysfunction or play a role in signaling processes that induce mitochondrial biogenesis. Our results provide new insights into the molecular mechanisms of mitochondrial diseases and highlight the potential relevance of protein nitration.
    Keywords:  mitochondrial DNA (mtDNA); mitochondrial diseases; nitrative stress; nitric oxide; oxidative stress; protein nitration; reactive nitrogen species (RNS); reactive oxygen species (ROS)
    DOI:  https://doi.org/10.3390/antiox14020211
  12. Cell Mol Life Sci. 2025 Feb 22. 82(1): 84
      Coenzyme A (CoA) is a crucial metabolite involved in various biological processes, encompassing lipid metabolism, regulation of mitochondrial function, and membrane modeling. CoA deficiency is associated with severe human diseases, such as Pantothenate Kinase-Associated Neurodegeneration (PKAN) and CoASY protein-associated neurodegeneration (CoPAN), which are linked to genetic mutations in Pantothenate Kinase 2 (PANK2) and CoA Synthase (CoASY). Although the association between CoA deficiency and mitochondrial dysfunction has been established, the underlying molecular alterations and mechanisms remain largely elusive. In this study, we investigated the detailed changes resulting from the functional decline of CoASY using the Drosophila model. Our findings revealed that a reduction of CoASY in muscle and brain led to degenerative phenotypes and apoptosis, accompanied by impaired mitochondrial integrity. The release of mitochondrial DNA was notably augmented, while the assembly and activity of mitochondrial electron transport chain (ETC) complexes, particularly complex I and III, were diminished. Consequently, this resulted in decreased ATP generation, rendering the fly more susceptible to energy insufficiency. Our findings suggest that compromised mitochondrial integrity and energy supply play a crucial role in the pathogenesis associated with CoA deficiency, thereby implying that enhancing mitochondrial integrity can be considered a potential therapeutic strategy in future interventions.
    Keywords:   Drosophila ; ATP; CoASY; Coenzyme A; Mitochondria
    DOI:  https://doi.org/10.1007/s00018-025-05576-1
  13. Trends Cell Biol. 2025 Feb 25. pii: S0962-8924(25)00038-8. [Epub ahead of print]
      Mitochondrial metabolism, signaling, and dynamics are key regulators of cell fate. While glycolysis supports stemness, mitochondrial expansion and oxidative phosphorylation (OXPHOS) facilitate differentiation. This forum presents emerging evidence that the type of substrate, whether amino acids, carbohydrates, or fatty acids, oxidized by mitochondria significantly influences differentiation outcomes.
    Keywords:  OXPHOS; amino acids; differentiation; fatty acids; glucose; mitochondria
    DOI:  https://doi.org/10.1016/j.tcb.2025.02.004
  14. Cell Rep Methods. 2025 Feb 24. pii: S2667-2375(25)00025-6. [Epub ahead of print]5(2): 100989
      Recent technical advances in volume electron microscopy (vEM) and artificial-intelligence-assisted image processing have facilitated high-throughput quantifications of cellular structures, such as mitochondria, that are ubiquitous and morphologically diversified. A still often-overlooked computational challenge is to assign a cell identity to numerous mitochondrial instances, for which both mitochondrial and cell membrane contouring used to be required. Here, we present a vEM reconstruction procedure (called mito-SegEM) that utilizes virtual-path-based annotation to assign automatically segmented mitochondrial instances at the cellular scale, therefore bypassing the requirement of membrane contouring. The embedded toolset in webKnossos (an open-source online annotation platform) is optimized for fast annotation, visualization, and proofreading of cellular organelle networks. We demonstrate the broad applications of mito-SegEM on volumetric datasets from various tissues, including the brain, intestine, and testis, to achieve an accurate and efficient reconstruction of mitochondria in a use-dependent fashion.
    Keywords:  CP: Cell biology; CP: Imaging; cell biology; image processing; mitochondrion; software; volume electron microscopy
    DOI:  https://doi.org/10.1016/j.crmeth.2025.100989
  15. Commun Biol. 2025 Feb 26. 8(1): 320
      Mitochondria play an essential role in the life cycle of eukaryotic cells. However, we still don't know how their ultrastructure, like the cristae of the inner membrane, dynamically evolves to regulate these fundamental functions, in response to external conditions or during interaction with other cell components. Although high-resolution fluorescent microscopy coupled with recently developed innovative probes can reveal this structural organization, their long-term, fast and live 3D imaging remains challenging. To address this problem, we have developed a CNN, called DeepCristae, to restore mitochondria cristae in low spatial resolution microscopy images. Our network is trained from 2D STED images using a novel loss specifically designed for cristae restoration. To efficiently increase the size of the training set, we also developed a random image patch sampling centered on mitochondrial areas. To evaluate DeepCristae, quantitative assessments are carried out using metrics we derived by focusing on the mitochondria and cristae pixels rather than on the whole image as usual. Depending on the conditions of use indicated, DeepCristae works well on broad microscopy modalities (Stimulated Emission Depletion (STED), Live-SR, AiryScan and LLSM). It is ultimately applied in the context of mitochondrial network dynamics during interaction with endo/lysosome membranes.
    DOI:  https://doi.org/10.1038/s42003-025-07684-x
  16. BMC Res Notes. 2025 Feb 25. 18(1): 83
       OBJECTIVE: This study aimed to identify novel isoforms of mouse succinate dehydrogenase complex flavoprotein subunit A (Sdha) arising from internal exon skipping, analogous to the process observed in human ortholog SDHA.
    RESULTS: We identified a novel isoform, designated Δ3-10, which lacked the final 104 nucleotides of exon 3 and all of exons 4 through 10, yet did not alter the reading frame. The Δ3-10 Sdha cDNA was cloned into expression vectors, and overexpression resulted in a protein localized to the mitochondria. However, the endogenous Δ3-10 Sdha protein was not detected with the available antibodies.
    Keywords:  Isoforms; Mitochondria; Mouse; Sdha
    DOI:  https://doi.org/10.1186/s13104-025-07149-8
  17. Life (Basel). 2025 Feb 11. pii: 270. [Epub ahead of print]15(2):
      The life functions of eukaryotic cells are intricately regulated by mitochondria [...].
    DOI:  https://doi.org/10.3390/life15020270
  18. Cells. 2025 Feb 11. pii: 257. [Epub ahead of print]14(4):
      Cells in heart muscle need to generate ATP at or near peak capacity to meet their energy demands. Over 90% of this ATP comes from mitochondria, strategically located near myofibrils and densely packed with cristae to concentrate ATP generation per unit volume. However, a consequence of dense inner membrane (IM) packing is that restricted metabolite diffusion inside mitochondria may limit ATP production. Under physiological conditions, the flux of ATP synthase is set by ADP levels in the matrix, which in turn depends on diffusion-dependent concentration of ADP inside cristae. Computer simulations show how ADP diffusion and consequently rates of ATP synthesis are modulated by IM topology, in particular (i) number, size, and positioning of crista junctions that connect cristae to the IM boundary region, and (ii) branching of cristae. Predictions are compared with the actual IM topology of a cardiomyocyte mitochondrion in which cristae vary systematically in length and morphology. The analysis indicates that this IM topology decreases but does not eliminate the "diffusion penalty" on ATP output. It is proposed that IM topology normally attenuates mitochondrial ATP output under conditions of low workload and can be regulated by the cell to better match ATP supply to demand.
    Keywords:  ATP synthesis; cristae; electron tomography; membrane topology; metabolic modeling; metabolite diffusion; mitochondria
    DOI:  https://doi.org/10.3390/cells14040257
  19. Biomolecules. 2025 Feb 02. pii: 216. [Epub ahead of print]15(2):
      Carnitine O-acetyltransferase (CRAT) is a key mitochondrial enzyme involved in maintaining metabolic homeostasis by mediating the reversible transfer of acetyl groups between acetyl-CoA and carnitine. This enzymatic activity ensures the optimal functioning of mitochondrial carbon flux by preventing acetyl-CoA accumulation, buffering metabolic flexibility, and regulating the balance between fatty acid and glucose oxidation. CRAT's interplay with the mitochondrial carnitine shuttle, involving carnitine palmitoyltransferases (CPT1 and CPT2) and the carnitine carrier (SLC25A20), underscores its critical role in energy metabolism. Emerging evidence highlights the structural and functional diversity of CRAT and structurally related acetyltransferases across cellular compartments, illustrating their coordinated role in lipid metabolism, amino acid catabolism, and mitochondrial bioenergetics. Moreover, the structural insights into CRAT have paved the way for understanding its regulation and identifying potential modulators with therapeutic applications for diseases such as diabetes, mitochondrial disorders, and cancer. This review examines CRAT's structural and functional aspects, its relationships with carnitine shuttle members and other carnitine acyltransferases, and its broader role in metabolic health and disease. The potential for targeting CRAT and its associated pathways offers promising avenues for therapeutic interventions aimed at restoring metabolic equilibrium and addressing metabolic dysfunction in disease states.
    Keywords:  CPT; CRAT; CROT; ChAT; artemisinin; carnitine palmitoyltransferases; choline acyltransferase; mitochondrial carnitine acetyltransferase; molecular modeling; peroxisomal carnitine octanoyltransferase; suramin
    DOI:  https://doi.org/10.3390/biom15020216
  20. Autophagy Rep. 2024 ;pii: 2434379. [Epub ahead of print]3(1):
      The ubiquitin kinase-ligase pair PINK1-PRKN identifies and selectively marks damaged mitochondria for elimination via the autophagy-lysosome system (mitophagy). While this cytoprotective pathway has been extensively studied in vitro upon acute and complete depolarization of mitochondria, the significance of PINK1-PRKN mitophagy in vivo is less well established. Here we used a novel approach to study PINK1-PRKN signaling in different energetically demanding tissues of mice during normal aging. We demonstrate a generally increased expression of both genes and enhanced enzymatic activity with aging across tissue types. Collectively our data suggest a distinct regulation of PINK1-PRKN signaling under basal conditions with the most pronounced activation and flux of the pathway in mouse heart compared to brain or skeletal muscle. Our biochemical analyses complement existing mitophagy reporter readouts and provide an important baseline assessment in vivo, setting the stage for further investigations of the PINK1-PRKN pathway during stress and in relevant disease conditions.
    Keywords:  PINK1; PRKN; aging; brain; heart; mice; mitochondria; mitophagy; phosphorylated ubiquitin; skeletal muscle
    DOI:  https://doi.org/10.1080/27694127.2024.2434379
  21. Biomolecules. 2025 Feb 19. pii: 304. [Epub ahead of print]15(2):
      The dynamic nature of mitochondria makes live cell imaging an important tool in mitochondrial research. Although imaging using fluorescent probes is the golden standard in studying mitochondrial morphology, these probes might introduce aspecific features. In this study, live cell fluorescent imaging was applied to investigate a pearl-necklace-shaped mitochondrial phenotype that arises when mitochondrial fission is restricted. In this fibroblast-specific pearl-necklace phenotype, constricted and expanded mitochondrial regions alternate. Imaging studies revealed that the formation time of this pearl-necklace phenotype differs between laser scanning confocal, widefield and spinning disk confocal microscopy. We found that the phenotype formation correlates with the excitation of the fluorescent probe and is the result of phototoxicity. Interestingly, the phenotype only arises in cells stained with red mitochondrial dyes. Serial section electron tomography of the pearl-necklace mitochondria revealed that the mitochondrial membranes remained intact, while the cristae structure was altered. Furthermore, filaments and ER were present at the constricted sites. This study illustrates the importance of considering experimental conditions for live cell imaging to prevent imaging artifacts that can have a major impact on the obtained results.
    Keywords:  electron microscopy; microscopy; mitochondria; mitochondrial dynamics; phototoxicity
    DOI:  https://doi.org/10.3390/biom15020304
  22. Biomolecules. 2025 Jan 27. pii: 184. [Epub ahead of print]15(2):
      Mitochondria are essential for brain function, and accumulating evidence from postmortem brain studies, neuroimaging, and basic research indicates mitochondrial impairments in patients with psychiatric disorders. Restoring mitochondrial function therefore represents a promising therapeutic strategy for these conditions. Mitochondrial transplantation, an innovative approach that uses functional mitochondria to repair damaged cells, has demonstrated efficacy through various delivery methods in cell, animal, and animal disease models. This review explores the critical link between mitochondria and psychiatric disorders and provides an overview of mitochondrial transplantation as a therapeutic intervention. It highlights recent advances in mitochondrial transplantation in animal models of psychiatric disorders, focusing on delivery methods, the timing of administration, and the integration of exogenous mitochondria into brain cells. The potential therapeutic effects and the mechanisms that underlie these effects are discussed. Additionally, this review evaluates the clinical relevance, challenges, and future strategies for the application of mitochondrial transplantation in the treatment of psychiatric disorders.
    Keywords:  brain functions; experimental disease models; mitochondrial transplantation; psychiatric disorders; therapeutic strategies
    DOI:  https://doi.org/10.3390/biom15020184
  23. Antioxidants (Basel). 2025 Jan 22. pii: 125. [Epub ahead of print]14(2):
      The perception of lysosomes and mitochondria as entirely separate and independent entities that degrade material and produce ATP, respectively, has been challenged in recent years as not only more complex roles for both organelles, but also an unanticipated level of interdependence are being uncovered. Coupled lysosome and mitochondrial function and dysfunction involve complex crosstalk between the two organelles which goes beyond mitochondrial quality control and lysosome-mediated clearance of damaged mitochondria through mitophagy. Our understanding of crosstalk between these two essential metabolic organelles has been transformed by major advances in the field of membrane contact sites biology. We now know that membrane contact sites between lysosomes and mitochondria play central roles in inter-organelle communication. This importance of mitochondria-lysosome contacts (MLCs) in cellular homeostasis, evinced by the growing number of diseases that have been associated with their dysregulation, is starting to be appreciated. How MLCs are regulated and how their coordination with other pathways of lysosome-mitochondria crosstalk is achieved are the subjects of ongoing scrutiny, but this review explores the current understanding of the complex crosstalk governing the function of the two organelles and its impact on cellular stress and disease.
    Keywords:  crosstalk; lysosomes; membrane contact sites; mitochondria
    DOI:  https://doi.org/10.3390/antiox14020125
  24. Comput Struct Biotechnol J. 2025 ;27 190-213
      The regulatory mechanisms of the mitochondrial calcium uniporter complex (mtCU), the predominant channel mediating calcium (Ca2 +) flux into the matrix, are critical for bioenergetics and cell fate. The pore-forming components of mtCU are the mitochondrial Ca2+ uniporter (MCU) subunit and the MCU dominant-negative beta (MCUb) subunit. Despite both MCU paralogs having conserved Asp-Ile-Met-Glu motifs responsible for Ca2+ selectivity, MCUb mediates only low Ca2+ conduction and has been characterized as an inhibitory subunit. We previously identified the MCU amino-terminal domain (NTD) as a negative feedback regulator of mtCU upon divalent cation binding but the role of the MCUb-NTD remains unknown. Thus, to gain mechanistic insight into the competing MCU and MCUb functions, we here studied the divalent cation binding properties of the MCU- and MCUb-NTDs that tightly interact within and between tetrameric channels. First, we resolved a high-resolution MCU-NTD crystal structure in the absence of divalent ions at 1.6 Å, using this structure to model the homologous MCUb-NTD. Further, we conducted 1 μs all-atom molecular dynamics (MD) simulations in the presence and absence of Ca2+ and Mg2+ ions, not only finding increased MCU-NTD stability at high temperatures compared to MCUb-NTD but also discrete Ca2+-binding sites on the two domains. Remarkably, the distinct Ca2+ binding site on the central α-helix of MCUb-NTD was also identified in a functional sector of co-evolving residues, with either direct mutation to the coordinating residues or mutation to a separate site within the sector disrupting Ca2+ binding in silico and in vitro as well as enhancing mitochondrial Ca2+ uptake in cellulo. Thus, we reveal that matrix Ca2+ binding to both the MCU-NTD and MCUb-NTD promote mtCU inhibition through disparate interaction sites, highlighting the evolution of discrete feedback regulation mechanisms to precisely control mtCU function.
    Keywords:  Amino-terminal domain; Divalent cation binding; Feedback regulation; MCU dominant-negative beta (MCUb); Mitochondrial Ca2+ uptake; Mitochondrial calcium uniporter (MCU); Molecular dynamics; PySCA of residue co-evolution; Solution NMR; X-ray crystallography
    DOI:  https://doi.org/10.1016/j.csbj.2024.12.007
  25. Nucleic Acids Res. 2025 Feb 08. pii: gkaf119. [Epub ahead of print]53(4):
      Human polynucleotide phosphorylase (hPNPase) is a 3'-to-5' exoribonuclease located in mitochondria, where it plays crucial roles in RNA degradation and RNA import. Mutations in hPNPase can impair these functions, leading to various mitochondrial dysfunctions and diseases. However, the mechanisms by which hPNPase switches between its roles as an RNA-degrading enzyme and an RNA carrier, as well as how disease-associated mutations may affect these distinct functions, remain unclear. In this study, we present cryo-electron microscopy structures of hPNPase, highlighting the flexibility of its S1 domains, which cap the ring-like RNA-degradation chamber and shift between two distinctive open and closed conformations. We further demonstrate by small-angle X-ray scattering and biochemical analyses that the disease-associated mutations P467S and G499R impair hPNPase's stem-loop RNA-binding and degradation activities by limiting the S1 domain's ability to transition from an open to closed state. Conversely, the D713Y mutation, located within the S1 domain, does not affect the RNA-binding affinity of hPNPase, but diminishes its interaction with Suv3 helicase for cooperative degradation of structured RNA. Collectively, these findings underscore the critical role of S1 domain mobility in capturing structured RNA for degradation and import, as well as its involvement in mitochondrial degradosome assembly. Our study thereby reveals the molecular mechanism of hPNPase in RNA binding and degradation, and the multiple molecular defects that could be induced by disease-linked mutations in hPNPase.
    DOI:  https://doi.org/10.1093/nar/gkaf119
  26. Biomolecules. 2025 Feb 03. pii: 223. [Epub ahead of print]15(2):
      The mitochondrial pyruvate carrier (MPC) is a transmembrane protein complex critical for cellular energy metabolism, enabling the transport of pyruvate from the cytosol into the mitochondria, where it fuels the citric acid cycle. By regulating this essential entry point of carbon into mitochondrial metabolism, MPC is pivotal for maintaining cellular energy balance and metabolic flexibility. Dysregulation of MPC activity has been implicated in several metabolic disorders, including type 2 diabetes, obesity, and cancer, underscoring its potential as a therapeutic target. This review provides an overview of the MPC complex, examining its structural components, regulatory mechanisms, and biological functions. We explore the current understanding of transcriptional, translational, and post-translational modifications that modulate MPC function and highlight the clinical relevance of MPC dysfunction in metabolic and neurodegenerative diseases. Progress in the development of MPC-targeting therapeutics is discussed, with a focus on challenges in designing selective and potent inhibitors. Emphasis is placed on modern approaches for identifying novel inhibitors, particularly virtual screening and computational strategies. This review establishes a foundation for further research into the medicinal chemistry of MPC inhibitors, promoting advances in structure-based drug design to develop therapeutics for metabolic and neurodegenerative diseases.
    Keywords:  MPC (mitochondrial pyruvate carrier); MPC inhibitors; drug design; energy metabolism; medicinal chemistry; metabolic disorders (e.g., diabetes, obesity, and cancer); neurodegenerative disorders; pyruvate transport; therapeutic target; virtual screening
    DOI:  https://doi.org/10.3390/biom15020223
  27. Nature. 2025 Feb 27.
      
    Keywords:  Drug discovery; Machine learning; Research data
    DOI:  https://doi.org/10.1038/d41586-025-00602-5
  28. J Inherit Metab Dis. 2025 Mar;48(2): e70004
      Cell trafficking disorders (CTD) are genetic defects in complex molecules and correspond to the largest category of IEM with mutations in more than 370 genes described. They are still poorly recognized as a global entity but rather seen as isolated rare diseases by non-metabolic specialists. Complex lipid metabolism (mostly phospholipids, sphingolipids, and non-mitochondrial fatty acids) is tightly associated with cell trafficking and interactions between organelles at the membrane contact sites. Accordingly, from a clinical point of view CTD presents with multisystem manifestations that may overlap and mimic mitochondrial and other complex molecule disorders such as peroxisomal, lysosomal defects, CDG, or autophagy disorders. The nervous system is especially vulnerable and neurological presentations are prominent, but CTD targets any organ at any age. Interestingly the involvement of the immune system is particularly characteristic of CTD and rarely (or at least little described so far) in other categories of IEM. Most CTD are progressive disorders, except for CDG. They may have "metabolic crises" mimicking disorders of intermediary and energy metabolism for which emergency protocols have been developed. They are generally diagnosed by exome sequencing. Relatively few biomarkers are available.
    Keywords:  cell trafficking disorders; haematological symptoms; immune symptoms; lipid metabolism; multisystem symptoms; neurodegeneration; neurodevelopment
    DOI:  https://doi.org/10.1002/jimd.70004
  29. bioRxiv. 2025 Feb 15. pii: 2025.02.13.638142. [Epub ahead of print]
      Progressive loss of retinal ganglion cells (RGCs) and degeneration of optic nerve axons are the pathological hallmarks of glaucoma. Ocular hypertension (OHT) and mitochondrial dysfunction are linked to neurodegeneration and vision loss in glaucoma. However, the exact mechanism of mitochondrial dysfunction leading to glaucomatous neurodegeneration is poorly understood. Using multiple mouse models of OHT and human eyes from normal and glaucoma donors, we show that OHT induces impaired mitophagy in RGCs, resulting in the accumulation of dysfunctional mitochondria and contributing to glaucomatous neurodegeneration. Using mitophagy reporter mice, we show that impaired mitophagy precedes glaucomatous neurodegeneration. Notably, the pharmacological rescue of impaired mitophagy via Torin-2 or genetic upregulation of RGC-specific Parkin expression restores the structural and functional integrity of RGCs and their axons in mouse models of glaucoma and ex-vivo human retinal-explant cultures. Our study indicates that impaired mitophagy contributes to mitochondrial dysfunction and oxidative stress, leading to glaucomatous neurodegeneration. Enhancing mitophagy in RGCs represents a promising therapeutic strategy to prevent glaucomatous neurodegeneration.
    DOI:  https://doi.org/10.1101/2025.02.13.638142
  30. Nat Methods. 2025 Feb 27.
      Cellular organelles undergo constant morphological changes and dynamic interactions that are fundamental to cell homeostasis, stress responses and disease progression. Despite their importance, quantifying organelle morphology and motility remains challenging due to their complex architectures, rapid movements and the technical limitations of existing analysis tools. Here we introduce Nellie, an automated and unbiased pipeline for segmentation, tracking and feature extraction of diverse intracellular structures. Nellie adapts to image metadata and employs hierarchical segmentation to resolve sub-organellar regions, while its radius-adaptive pattern matching enables precise motion tracking. Through a user-friendly Napari-based interface, Nellie enables comprehensive organelle analysis without coding expertise. We demonstrate Nellie's versatility by unmixing multiple organelles from single-channel data, quantifying mitochondrial responses to ionomycin via graph autoencoders and characterizing endoplasmic reticulum networks across cell types and time points. This tool addresses a critical need in cell biology by providing accessible, automated analysis of organelle dynamics.
    DOI:  https://doi.org/10.1038/s41592-025-02612-7
  31. Biomed Rep. 2025 Apr;22(4): 67
      Pontocerebellar hypoplasia type 2D (PCH2D) is caused by mutations in the gene encoding O-phosphoseryl-tRNA:selenocysteinyl-tRNA synthase (SEPSECS; chromosome 4p15.2). This is a key enzyme in the biosynthesis of selenoproteins, which act in maintaining antioxidant systems. To date, 26 patients with PCH2D have been reported, all with neurological involvement characterized by progressive pontocerebellar and cerebral atrophy. The present study reports on a patient with compound heterozygosity in the SEPSECS gene, including a novel missense variant, c.440G>A (p.Ser147Asn). The patient exhibited acute neurological regression following a vaccination-related fever, which is reminiscent of primary mitochondrial disease. In addition, the patient displayed severe spastic tetraparesis, convergent strabismus and postnatal onset of microcephaly, as well as recurrent blood lactate elevation. Brain MRI showed multiple alterations in the peri/supraventricular and subcortical white matter and progressive pontocerebellar and cerebral atrophy. A review of the clinical spectrum associated with SEPSECS mutations was conducted and the first report on a patient with SEPSECS mutations of acute neurological regression following a catabolic stressor at the onset of PCH2D was provided. This study broadens the genetic background of PCH2D and associated PCH2D phenotype, supporting the causal link between selenoprotein biosynthesis deficiency and mitochondrial disorders.
    Keywords:  SEPSECS gene; cerebral and pontocerebellar atrophy; microcephaly; mitochondrial disease; selenoproteins
    DOI:  https://doi.org/10.3892/br.2025.1945
  32. Antioxidants (Basel). 2025 Feb 13. pii: 215. [Epub ahead of print]14(2):
      Ferroptosis, an iron-dependent form of non-apoptotic cell death, is regulated by a complex network involving lipid metabolism, iron homeostasis, and the oxidative-reductive system, with iron accumulation and lipid peroxidation as key drivers. Mitochondrial dysfunction and ROS overproduction often underlie the pathogenesis of mitochondrial diseases, for which treatment options are limited, emphasizing the need for novel therapies. In this study, we investigated whether polydatin and nicotinamide could reverse ferroptosis-related pathological features in cellular models derived from patients with pathogenic GFM1 variants. Mutant fibroblasts showed increased iron and lipofuscin accumulation, altered expression of iron metabolism-related proteins, elevated lipid peroxidation, and heightened susceptibility to erastin-induced ferroptosis. Treatment with polydatin and nicotinamide effectively corrected these alterations and reduced iron accumulation and lipid peroxidation in induced neurons. Furthermore, chloramphenicol treatment in control cells mimicked the mutant phenotype, suggesting that these pathological changes are linked to the mitochondrial protein synthesis defect characteristic of pathogenic GFM1 variants. Notably, adding vitamin E to the polydatin and nicotinamide co-treatment resulted in a reduction in the minimum effective concentration, suggesting potential benefits of its inclusion. In conclusion, the combination of polydatin, nicotinamide, and vitamin E could represent a promising therapeutic option for patients with mitochondrial disorders caused by pathogenic GFM1 variants.
    Keywords:  GFM1; direct reprogramming; ferroptosis; iron accumulation; lipid peroxidation; mitochondrial diseases; mtUPR
    DOI:  https://doi.org/10.3390/antiox14020215
  33. J Biol Chem. 2025 Feb 25. pii: S0021-9258(25)00208-X. [Epub ahead of print] 108359
      Increasing lines of evidence link the expression of the interferon-stimulated gene RSAD2, encoding the antiviral enzyme, viperin, to autoimmune disease. Autoimmune diseases are characterized by chronic over-production of cytokines such as interferons that upregulate the inflammatory response. Immune cells exposed to interferon selectively downregulate transcription of the mitochondrially-encoded components of the oxidative phosphorylation system, which leads to mitochondria becoming dysfunctional and impairing their ability to produce ATP. But the mechanism by which downregulation occurs has remained unknown. Here we show that 3'-deoxy-3',4'-didehydrocytidine triphosphate (ddhCTP) which is synthesized by viperin suppresses mitochondrial transcription by causing premature chain termination when misincorporated by the mitochondrial RNA polymerase (POLRMT). We show that expression of viperin in human cell lines downregulates mitochondrially encoded gene expression. A similar effect is observed across multiple cell lines when cells are exposed to ddhC, the precursor to ddhCTP. The pattern of gene downregulation fits well with a simple, quantitative model describing chain-termination. In vitro measurements with purified POLRMT demonstrate that ddhCTP competes effectively with CTP, leading to its misincorporation into RNA. These findings reveal a new molecular mechanism for mitochondrial transcriptional regulation that explains the reduction in mitochondrially-encoded transcript levels in response to chronic interferon stimulation, characteristic of inflammatory diseases.
    DOI:  https://doi.org/10.1016/j.jbc.2025.108359
  34. Neurogenetics. 2025 Feb 27. 26(1): 33
      Mitochondrial Complex V (ATP synthase) deficiency nuclear type 6 (MC5DN6) is a progressive neurodegenerative disorder characterized by autosomal recessive inheritance and developmental regression, particularly in gross motor skills, which manifests in early childhood. This study aims to present the discovery of a novel variant in four male siblings aged 13 years 9 months to 25 years, making this the fourth family reported globally, while also raising awareness of rare mitochondrial diseases. Four individuals from the same family were retrospectively evaluated based on their demographic, clinical, laboratory, and molecular genetic data. The mutation in the ATP5MK gene was analyzed using the exome sequencing (ES) method. The detected variation was classified according to the criteria American College of Medical Genetics. Four cases, aged between 13 years 9 months and 25 years, were analyzed. All individuals were male. While all four cases had a history of neurodegenerative disease, they also exhibited intellectual disability, muscle weakness, increased deep tendon reflexes in the lower extremities, spasticity, scoliosis, pes cavus deformity, positive Babinski reflex, abnormal gait patterns due to foot deformities, and normal cerebellar tests. Additional findings included geographic tongue (n = 2), strabismus (n = 2), nystagmus (n = 1), ophthalmoplegia (n = 2), hypertrophic upper extremity muscle body build (n = 2), keloid tissue (n = 1), and short stature (n = 3). ES of the first case identified a homozygous splice donor variant (c.87 + 1G > A) in the ATP5MK gene as a novel variant, and family screening revealed the same variant in a biallelic state in the other three siblings. The parents were confirmed as heterozygous carriers, consistent with autosomal recessive inheritance. Mitochondrial diseases can mimic a wide range of neurological disorders. They should be considered as a potential underlying cause when treatment for suspected differential diagnoses proves ineffective.
    Keywords:   ATP5MK gene; Mitochondrial complex; Neurodegeneration
    DOI:  https://doi.org/10.1007/s10048-025-00813-y
  35. J Cell Biol. 2025 May 05. pii: e202410001. [Epub ahead of print]224(5):
      Loss of TANGO2 in humans precipitates metabolic crises during periods of heightened energy demand, such as fasting, infections, or high fever. TANGO2 has been implicated in various functions, including lipid metabolism and heme transport, and its cellular localization remains uncertain. In our study, we demonstrate that TANGO2 localizes to the mitochondrial lumen via a structural region containing LIL residues. Mutations in these LIL residues cause TANGO2 to relocate to the periphery of lipid droplets. We further show that purified TANGO2 binds acyl-coenzyme A, and mutations in the highly conserved NRDE sequence of TANGO2 inhibit this binding. Collectively, our findings suggest that TANGO2 serves as an acyl-coenzyme A binding protein. These insights may provide new avenues for addressing the severe cardiomyopathies and rhabdomyolysis associated with defective TANGO2 in humans.
    DOI:  https://doi.org/10.1083/jcb.202410001
  36. Sci Rep. 2025 Feb 23. 15(1): 6528
      Loss of synaptic activity correlates best with cognitive dysfunction in Alzheimer's disease (AD). We have previously shown that mild inhibition of mitochondrial complex I with the small molecule tricyclic pyrone compound CP2 restores long-term potentiation and cognitive function assessed by electrophysiology and behavior tests in multiple mouse models of AD. Using serial block-face scanning electron microscopy and three-dimensional electron microscopy reconstruction, we examined the effect of CP2 treatment on synapses, and the distribution and morphology of synaptic mitochondria in the hippocampus of APP/PS1 mice. Structural data confirmed the loss of synapses in APP/PS1 compared to non-transgenic (NTG) littermates. Mitochondrial distribution assessed in pre- and postsynaptic compartments was significantly altered in AD model demonstrating increased presence of mitochondria around dendritic spines compared to NTG mice, indicating the loss of mitochondrial ability to support synaptic function. CP2 treatment restored distribution of synaptic mitochondria and the number of synapses to the NTG control levels. Improved synaptic function in CP2-treated APP/PS1 mice was supported by RNA-seq analysis indicating upregulation of genes involved in axonal guidance, dendritic maturation and synaptic function, and Western blot analysis of brain tissue. Taken together, functional, imaging, biochemistry and structural findings further support the potential of targeting mitochondria as a therapeutic approach for AD.
    Keywords:  Alzheimer’s disease; Mitochondria; Mitochondria-on-a-string (MOAS).; Mitochondrial complex I inhibition; Serial block-face scanning electron microscopy (SBFSEM); Synapse; Three-dimensional electron microscopy (3D EM) reconstruction; Volume electron microscopy
    DOI:  https://doi.org/10.1038/s41598-025-90925-0
  37. Cells. 2025 Feb 13. pii: 276. [Epub ahead of print]14(4):
      Mitochondrial dysfunction represents a pivotal characteristic of numerous neurodegenerative disorders, including Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. These conditions, distinguished by unique clinical and pathological features, exhibit shared pathways leading to neuronal damage, all of which are closely associated with mitochondrial dysfunction. The high metabolic requirements of neurons make even minor mitochondrial deficiencies highly impactful, driving oxidative stress, energy deficits, and aberrant protein processing. Growing evidence from genetic, biochemical, and cellular investigations associates impaired electron transport chain activity and disrupted quality-control mechanisms, such as mitophagy, with the initial phases of disease progression. Furthermore, the overproduction of reactive oxygen species and persistent neuroinflammation can establish feedforward cycles that exacerbate neuronal deterioration. Recent clinical research has increasingly focused on interventions aimed at enhancing mitochondrial resilience-through antioxidants, small molecules that modulate the balance of mitochondrial fusion and fission, or gene-based therapeutic strategies. Concurrently, initiatives to identify dependable mitochondrial biomarkers seek to detect pathological changes prior to the manifestation of overt symptoms. By integrating the current body of knowledge, this review emphasizes the critical role of preserving mitochondrial homeostasis as a viable therapeutic approach. It also addresses the complexities of translating these findings into clinical practice and underscores the potential of innovative strategies designed to delay or potentially halt neurodegenerative processes.
    Keywords:  mitochondrial dynamics; mitochondrial dysfunction; neurodegenerative disease; oxidative stress
    DOI:  https://doi.org/10.3390/cells14040276
  38. Life (Basel). 2025 Jan 25. pii: 174. [Epub ahead of print]15(2):
      Mitochondria play a central role in cell biological processes, functioning not only as producers of ATP but also as regulators of Ca2+ signaling. Mitochondrial calcium uptake occurs primarily through the mitochondrial calcium uniporter channel (mtCU), with the mitochondrial calcium uptake subunits 1, 2, and 3 (MICU1, MICU2, and MICU3) serving as the main regulatory components. Dysregulated mitochondrial calcium uptake is a hallmark of cellular degeneration. Sirtuin 1 (SIRT1), a key regulator of cellular metabolism, plays a critical role in aging and various neurodegenerative conditions. By blocking SIRT1 using EX527 or shSIRT1, we observed mitochondrial structural fragmentation as well as intensified and prolonged mitochondrial calcium overload. Our study revealed a direct interaction between SIRT1 and MICU1. Notably, SIRT1 inhibition resulted in reduced MICU1 expression, hence led to mitochondrial calcium overload, illustrating the unconventional role of SIRT1 in governing mitochondrial function.
    Keywords:  MICU1; SIRT1; Sirtuin 1; calcium uptake; mitochondria; mitochondrial calcium uptake 1
    DOI:  https://doi.org/10.3390/life15020174
  39. bioRxiv. 2025 Feb 12. pii: 2025.02.11.637758. [Epub ahead of print]
      Machine learning holds immense promise in biology, particularly for the challenging task of identifying causal variants for Mendelian and complex traits. Two primary approaches have emerged for this task: supervised sequence-to-function models trained on functional genomics experimental data and self-supervised DNA language models that learn evolutionary constraints on sequences. However, the field currently lacks consistently curated datasets with accurate labels, especially for non-coding variants, that are necessary to comprehensively benchmark these models and advance the field. In this work, we present TraitGym, a curated dataset of regulatory genetic variants that are either known to be causal or are strong candidates across 113 Mendelian and 83 complex traits, along with carefully constructed control variants. We frame the causal variant prediction task as a binary classification problem and benchmark various models, including functional-genomics-supervised models, self-supervised models, models that combine machine learning predictions with curated annotation features, and ensembles of these. Our results provide insights into the capabilities and limitations of different approaches for predicting the functional consequences of non-coding genetic variants. We find that alignment-based models CADD and GPN-MSA compare favorably for Mendelian traits and complex disease traits, while functional-genomics-supervised models Enformer and Borzoi perform better for complex non-disease traits. The benchmark, including a Google Colab notebook to evaluate a model in a few minutes, is available at https://huggingface.co/datasets/songlab/TraitGym.
    DOI:  https://doi.org/10.1101/2025.02.11.637758
  40. bioRxiv. 2025 Feb 16. pii: 2025.02.13.637994. [Epub ahead of print]
      Glutaric aciduria type-1 (GA1) is an inherited mitochondrial neurometabolic disorder with a poorly understood pathogenesis and unmet medical needs. GA1 can be diagnosed via its hallmark biochemical signature consisting of glutaric aciduria, 3-hydroxyglutaric aciduria, and increased plasma glutarylcarnitine. These glutaryl-CoA-derived metabolites are thought to originate solely in the mitochondria. Here, we demonstrate that wild-type mice fed an 11-carbon odd-chain dicarboxylic acid (undecanedioic acid, DC 11 ) recreates the biochemical phenotype of GA1. Odd-chain dicarboxylic acids like DC 11 are not present in food but can arise from several endogenous processes, such as lipid peroxidation and fatty acid ω-oxidation. DC 11 is chain-shortened in peroxisomes to glutaryl (DC 5 )-CoA, which then gives rise to the GA1-like pattern of DC 5 metabolites in urine, tissues, and blood. Glutaric acid released from peroxisomes during DC 11 chain-shortening can enter mitochondria, be activated to CoA by the enzyme succinyl-CoA:glutarate-CoA transferase (SUGCT), and become substrate for glutaryl-CoA dehydrogenase (GCDH), the enzyme that is mutated in GA1. Our data provide proof-of-concept that the generation of dicarboxylic acids by ω-oxidation, which is stimulated during the same catabolic states known to trigger acute encephalopathy in GA1, may exacerbate disease by increasing the glutaryl-CoA substrate load in mitochondria.
    DOI:  https://doi.org/10.1101/2025.02.13.637994
  41. Int J Mol Sci. 2025 Feb 10. pii: 1454. [Epub ahead of print]26(4):
      Pancreatic beta cells regulate insulin secretion in response to glucose by generating ATP, which modulates ATP-sensitive potassium channels (KATP) channel activity and Ca2+ dynamics. We present a model of ATP production in pancreatic beta cells, focusing on ATP dynamics within the bulk cytosol, submembrane region, and microdomains near KATP channels. ATP is generated through glycolysis, mitochondrial oxidative phosphorylation (OxPhos), and glycolytic pyruvate kinase-mediated phosphoenolpyruvate (PEP) production, supported by PEP cycling between mitochondria and the cytosol. The model examines ATP production in relation to Ca2+ oscillations, elucidating their interdependent dynamics. Our findings demonstrate that both mitochondrial OxPhos and PEP-mediated ATP production contribute substantially to cellular ATP levels. Specifically, glycolysis and mitochondrial OxPhos are crucial for the initial (first-phase) increase in bulk and subplasmalemmal ATP, effectively "filling up" the ATP pool in beta cells. In the second phase, coordinated cycling between OxPhos and PEP pathways enables cost-effective fine-tuning of ATP levels, with localized effects in the KATP channel microdomains. This model addresses and clarifies the recent debate regarding the mechanisms by which sufficient ATP concentrations are achieved to close KATP channels in glucose-stimulated beta cells, offering novel insights into the regulation of energy production and KATP channel activity.
    Keywords:  ATP microdomain; NADPH; anaplerosis; beta cell; model
    DOI:  https://doi.org/10.3390/ijms26041454
  42. Int J Biol Sci. 2025 ;21(4): 1767-1783
      The liver is a vital metabolic organ that detoxifies substances, produces bile, stores nutrients, and regulates versatile metabolic processes. Maintaining normal liver cell function requires the prompt and delicate modulation of mitochondrial quality control (MQC), which encompasses a spectrum of processes such as mitochondrial fission, fusion, biogenesis, and mitophagy. Recent studies have shown that disruptions to this homeostatic status are closely linked to the advent and progression of a variety of acute and chronic liver diseases, including but not limited to alcohol-associated liver disease and metabolic dysfunction-associated fatty liver disease. However, the explicit mechanisms by which mitochondrial dysfunction impacts inflammatory pathways and cell death in the context of liver diseases remain unclear. In this narrative review, we provide a detailed description of MQC, analyze the mechanisms underpinning mitochondrial dysfunction induced by different detrimental insults, and further elucidate how imbalanced/disrupted MQC promotes the progression and aggravation of liver diseases, ultimately shedding light on the mitochondrion-centric therapeutic strategies for these pathophysiological entities.
    Keywords:  liver diseases; macrophage heterogeneity; mitochondrial dynamics; mitochondrial quality control; mitophagy; mtDNA; reactive oxygen species
    DOI:  https://doi.org/10.7150/ijbs.107777
  43. Genet Med. 2025 Feb 19. pii: S1098-3600(25)00033-4. [Epub ahead of print] 101386
       INTRODUCTION: Single Large-Scale mtDNA Deletions (SLSMD) result in Single Large Scale Deletion Syndromes (SLSMDS). SLSMDS presentations have classically been recognized to encompass at least three distinct clinical phenotypes, Pearson Syndrome (PS), Kearns-Sayre Syndrome (KSS), and Chronic Progressive Ophthalmoplegia (CPEO).
    METHODS: Facilitated review of electronic medical records, manual charts, and REDCap research databases was performed to complete a retrospective natural history study of 30 SLSMDS participants in a single health system seen between 2002 and 2020. Characteristics evaluated included genetic and clinical laboratory test values, growth parameters, signs and symptoms, demographics, and patient reported outcome measures of fatigue, quality of life, and overall function.
    RESULTS: Detailed cohort characterization highlighted that a recurrent deleted region involving MT-ND5 (HGNC:7641) occurs in 96% of SLSMD subjects regardless of clinical phenotype, which tended to evolve over time. Higher blood heteroplasmy correlated with earlier age of onset. GDF-15 was elevated in all SLSMD subjects. A PS history yielded negative survival prognosis. Furthermore, increased fatigue and decreased quality of life were reported in SLSMD subjects with advancing age.
    CONCLUSION: Retrospective natural history study of SLSMDS subjects demonstrated the evolution of classically considered PS, KSS, and CPEO clinical presentations within affected individuals, which may inform future clinical trial development.
    Keywords:  Chronic Progressive Ophthalmoplegia; Kearns-Sayre Syndrome; Pearson Syndrome; Primary Mitochondrial Disease; Single Large-Scale mtDNA Deletions
    DOI:  https://doi.org/10.1016/j.gim.2025.101386
  44. Nature. 2025 Feb 26.
      Up to 80% of rare disease patients remain undiagnosed after genomic sequencing1, with many probably involving pathogenic variants in yet to be discovered disease-gene associations. To search for such associations, we developed a rare variant gene burden analytical framework for Mendelian diseases, and applied it to protein-coding variants from whole-genome sequencing of 34,851 cases and their family members recruited to the 100,000 Genomes Project2. A total of 141 new associations were identified, including five for which independent disease-gene evidence was recently published. Following in silico triaging and clinical expert review, 69 associations were prioritized, of which 30 could be linked to existing experimental evidence. The five associations with strongest overall genetic and experimental evidence were monogenic diabetes with the known β cell regulator3,4 UNC13A, schizophrenia with GPR17, epilepsy with RBFOX3, Charcot-Marie-Tooth disease with ARPC3 and anterior segment ocular abnormalities with POMK. Further confirmation of these and other associations could lead to numerous diagnoses, highlighting the clinical impact of large-scale statistical approaches to rare disease-gene association discovery.
    DOI:  https://doi.org/10.1038/s41586-025-08623-w
  45. Curr Opin Struct Biol. 2025 Feb 22. pii: S0959-440X(25)00041-7. [Epub ahead of print]92 103023
      Despite massive sequencing efforts, understanding the difference between human pathogenic and benign variants remains a challenge. Computational variant effect predictors (VEPs) have emerged as essential tools for assessing the impact of genetic variants, although their performance varies. Initially, sequence-based methods dominated the field, but recent advances, particularly in protein structure prediction technologies like AlphaFold, have led to an increased utilization of structural information by VEPs aimed at scoring human missense variants. This review highlights the progress in integrating structural information into VEPs, showcasing novel models such as AlphaMissense, PrimateAI-3D, and CPT-1 that demonstrate improved variant evaluation. Structural data offers more interpretability, especially for non-loss-of-function variants, and provides insights into complex variant interactions in vivo. As the field advances, utilizing biomolecular complex structures will be pivotal for future VEP development, with recent breakthroughs in protein-ligand and protein-nucleic acid complex prediction offering new avenues.
    DOI:  https://doi.org/10.1016/j.sbi.2025.103023
  46. STAR Protoc. 2025 Feb 24. pii: S2666-1667(25)00057-7. [Epub ahead of print]6(1): 103651
      Aberrant mitochondrial function can lead to severe human diseases, including neurodegenerative diseases and cancer. Here, we describe a cell-based protocol for measuring different mitochondrial respiratory parameters using the high-resolution real-time Resipher system. We optimized this protocol on brain tumor stem cells cultured in three-dimensional spheroids. We provide essential optimization steps for cell seeding density, mitochondrial respiration modulator concentrations, running the assay, and data analysis. For complete details on the use and execution of this protocol, please refer to Burban et al.1.
    Keywords:  Cancer; Cell-based Assays; Metabolism
    DOI:  https://doi.org/10.1016/j.xpro.2025.103651
  47. Eur J Hum Genet. 2025 Feb 27.
      Timely genetic testing is crucial for diagnosing pediatric patients in the intensive care units (ICUs) without known etiology. We aim to explore the benefits of singleton rapid long-read genome sequencing (rLR-GS) in critically ill children admitted to ICU with a suspected genetic etiology. Children younger than 18 years of age admitted to the ICU with a suspected genetic etiology at two tertiary hospitals in Thailand from August 2023 to May 2024 were included. rLR-GS was performed. The value of a molecular diagnosis for changing patient management outcomes was assessed. Eighteen patients were recruited. Singleton rLR-GS identified seventeen likely pathogenic (LP) or pathogenic (P) variants, resulting in the diagnosis of eleven distinct genetic disorders with autosomal recessive, autosomal dominant, and mitochondrial inheritance patterns. This yielded a diagnostic rate of 61% (11/18) with a median turnaround time of nine days. Specifically, rLR-GS identified three pathogenic structural variants (SVs), including large deletions of 19 kb, 2.4 kb, and 10.1 kb. Additionally, it provided phasing information for the two variants in each of the six patients with autosomal recessive disorders. Furthermore, the identification of two SVs and the phasing information led to the reclassification of three single nucleotide variants (SNV), one in each patient, from variants of unknown significance (VUS) to LP. The application of rLR-GS resulted in significant changes in the management of all eleven patients. This proof-of-concept study demonstrated the utility of singleton rLR-GS as a first-tier diagnostic approach for critically ill patients with unknown causes.
    DOI:  https://doi.org/10.1038/s41431-025-01818-9
  48. Biochem Biophys Res Commun. 2025 Feb 17. pii: S0006-291X(25)00212-8. [Epub ahead of print]753 151498
      Metabolic dysfunction-associated fatty liver disease (MAFLD) is a clinical-pathological syndrome primarily characterized by excessive accumulation of fat in hepatocytes, independent of alcohol consumption and other well-established hepatotoxic agents. Mitochondrial dysfunction is widely acknowledged as a pivotal factor in the pathogenesis of various diseases, including cardiovascular diseases, cancer, neurodegenerative disorders, and metabolic diseases such as obesity and obesity-associated MAFLD. Mitochondria are dynamic cellular organelles capable of modifying their functions and structures to accommodate the metabolic demands of cells. In the context of MAFLD, the excess production of reactive oxygen species induces oxidative stress, leading to mitochondrial dysfunction, which subsequently promotes metabolic disorders, fat accumulation, and the infiltration of inflammatory cells in liver and adipose tissue. This review aims to systematically analyze the role of mitochondria-targeted therapies in MAFLD, evaluate current therapeutic strategies, and explore future directions in this rapidly evolving field. We specifically focus on the molecular mechanisms underlying mitochondrial dysfunction, emerging therapeutic approaches, and their clinical implications. This is of significant importance for the development of new therapeutic approaches for these metabolic disorders.
    Keywords:  MAFLD; Mitochondria; Targeted therapy
    DOI:  https://doi.org/10.1016/j.bbrc.2025.151498
  49. Mol Neurobiol. 2025 Feb 26.
      Adenine nucleotide translocase 1 (ANT1), involved in exchanging ATP and ADP across the mitochondrial inner membrane, is downregulated in mouse brains with Parkinsonian variations. To further explore the role of ANT1 in neuronal cells, an intensive investigation was conducted by introducing overexpressed ANT1 and ANT1 mutant at Asn177 into neuroblastoma SH-SY5Y cells treated with MPP+. Consequently, ANT1 was found to be involved in maintaining mitochondrial functions by attenuating ROS levels and ameliorating a long-lasting mPTPs opening and aberrant mitochondrial membrane potential (△Ψm) induced by MPP+. RNA-Seq analysis revealed that the processes including respiration, mitochondrial transporting, mitochondrial organization and apoptosis were highly facilitated in response to ANT1 supplement under MPP+ treatment. Additionally, ANT1 enrichment promoted a clearance of the damaged cells via activating the DDIT3-CytC-related pathway and resulted in an intensified structure of actin microfilaments. However, ANT1 mutant served as a causative factor, since it led to mitochondrial dysfunction via promoting a long-lasting mPTPs opening, inactivating DDIT3-CytC-related pathway and strongly impairing actin microfilaments. These observations are helpful to improve the understanding of the role of ANT1 in regulating mitochondrial functions in neuronal cells and to explore a potential therapeutic implication of ANT1 for Parkinson's disease as a promising target.
    Keywords:  Adenine nucleotide translocase 1; CytC; DDIT3; Mitochondria; Parkinson’s disease; RNA-Seq
    DOI:  https://doi.org/10.1007/s12035-025-04710-1
  50. Cell Prolif. 2025 Feb 27. e13808
      Genetic diseases have long posed significant challenges, with limited breakthroughs in treatment. Recent advances in gene editing technologies offer new possibilities in gene therapy for the treatment of inherited disorders. However, traditional gene editing methods have limitations that hinder their potential for clinical use, such as limited editing capabilities and the production of unintended byproducts. To overcome these limitations, prime editing (PE) has been developed as a powerful tool for precise and efficient genome modification. In this review, we provide an overview of the latest advancements in PE and its potential applications in the treatment of inherited disorders. Furthermore, we examine the current delivery vehicles employed for delivering PE systems in vitro and in vivo, and analyze their respective benefits and limitations. Ultimately, we discuss the challenges that need to be addressed to fully unlock the potential of PE for the remission or cure of genetic diseases.
    Keywords:  delivery vehicles; genetic disorders; genome manipulation; precise therapy; prime editing
    DOI:  https://doi.org/10.1111/cpr.13808
  51. Mol Genet Metab Rep. 2025 Mar;42 101198
       Background: The human mitochondrial methionyl-tRNA is crucial for mitochondrial translation, serving as both initiator and elongator in polypeptide chains. The MARS2 gene is responsible for binding methionine to mitochondrial tRNA. The clinical characteristics of MARS2 intragenic variants are still largely unknown, since only a pair of siblings has been reported. The present patient presented with psychomotor developmental delay, growth failure, and spondylar dysplasia, which attracted attention in infancy and deteriorated with age.
    Case presentation: A 7-month-old Japanese girl presented with failure to thrive, feeding difficulties, and psychomotor developmental delay. Radiological examination showed generalized skeletal alterations including mild spondylar dysplasia and abnormal ilia, which resembled mucopolysaccharidosis; however, the urinary glycosaminoglycan levels and alpha-L-iduronidase activity in the filter paper blood were normal. At age 33 months, she showed hyperlactatemia, and genetic analysis showed compound heterozygous novel variants (NM_138395.4: c.[277G > A]; [409C > T]: p.([Asp93Asn]; [Arg137Cys])) in the MARS2 gene. After starting vitamin supplementation, her growth and development improved. Radiological examination at ages 2 and 4 years demonstrated a skeletal phenotype: platyspondyly with anterior beaking of the vertebral bodies; large proximal femoral epiphyses; and mild brachymesophalangy. The results of the mitochondrial respiratory chain activity examination using skin fibroblasts were within the normal range.
    Conclusion: The skeletal phenotype may be a syndromic component of this disorder associated with MARS2 intragenic variants.
    Keywords:  Amino-acyl tRNA synthetase; MARS2; Mitochondria; Spondylar dysplasia
    DOI:  https://doi.org/10.1016/j.ymgmr.2025.101198
  52. Nat Cell Biol. 2025 Feb 26.
      Recent advancements in functional genomics have provided an unprecedented ability to measure diverse molecular modalities, but predicting causal regulatory relationships from observational data remains challenging. Here, we leverage pooled genetic screens and single-cell sequencing (Perturb-seq) to systematically identify the targets of signalling regulators in diverse biological contexts. We demonstrate how Perturb-seq is compatible with recent and commercially available advances in combinatorial indexing and next-generation sequencing, and perform more than 1,500 perturbations split across six cell lines and five biological signalling contexts. We introduce an improved computational framework (Mixscale) to address cellular variation in perturbation efficiency, alongside optimized statistical methods to learn differentially expressed gene lists and conserved molecular signatures. Finally, we demonstrate how our Perturb-seq derived gene lists can be used to precisely infer changes in signalling pathway activation for in vivo and in situ samples. Our work enhances our understanding of signalling regulators and their targets, and lays a computational framework towards the data-driven inference of an 'atlas' of perturbation signatures.
    DOI:  https://doi.org/10.1038/s41556-025-01622-z
  53. Nature. 2025 Feb 26.
      Metabolic flux, or the rate of metabolic reactions, is one of the most fundamental metrics describing the status of metabolism in living organisms. However, measuring fluxes across the entire metabolic network remains nearly impossible, especially in multicellular organisms. Computational methods based on flux balance analysis have been used with genome-scale metabolic network models to predict network-level flux wiring1-6. However, such approaches have limited power because of the lack of experimental constraints. Here, we introduce a strategy that infers whole-animal metabolic flux wiring from transcriptional phenotypes in the nematode Caenorhabditis elegans. Using a large-scale Worm Perturb-Seq (WPS) dataset for roughly 900 metabolic genes7, we show that the transcriptional response to metabolic gene perturbations can be integrated with the metabolic network model to infer a highly constrained, semi-quantitative flux distribution. We discover several features of adult C. elegans metabolism, including cyclic flux through the pentose phosphate pathway, lack of de novo purine synthesis flux and the primary use of amino acids and bacterial RNA as a tricarboxylic acid cycle carbon source, all of which we validate by stable isotope tracing. Our strategy for inferring metabolic wiring based on transcriptional phenotypes should be applicable to a variety of systems, including human cells.
    DOI:  https://doi.org/10.1038/s41586-025-08635-6
  54. Neurol Neurochir Pol. 2025 ;59(1): 56-61
       INTRODUCTION: Early-onset Parkinson's Disease (EOPD) is a neurodegenerative disease with the clinical manifestation of movement symptoms before the age of 50. Patients with EOPD frequently have a positive family history of disease, with bi-allelic loss of function mutations in PRKN and PINK1 as the most common genetic cause. To date, the majority of genetic studies have been conducted on patients with European ancestry, limiting the understanding of the genetic heterogeneity of EOPD across populations. The aim of this study was to screen the PRKN and PINK1 genes in an Ecuadorian EOPD cohort, and improve the understanding of the genetic profile of patients in this population.
    MATERIAL AND METHODS: Seventy unrelated patients with EOPD and with an average age at onset of 42.6 ± 5.6 years were recruited at the Hospital Eugenio Espejo in Quito, Ecuador, and screened for the presence of PRKN and PINK1 single nucleotide and copy number variations.
    RESULTS: Sanger sequencing identified six PRKN variants, and five resulted in nonsynonymous amino acid substitutions. Seven PINK1 variants were identified: four nonsynonymous, and three common (MAF > 1%), among the EOPD cohort. Multiplex ligation-dependent probe amplification (MLPA) identified three carriers with PRKN copy number variants. Overall, across the series, two patients carried pathogenic homozygous deletions of exons 3 and 4.
    DISCUSSION: Gaining insights into the genetics of EOPD in Latin America is important. In this study, we have identified two carriers of pathogenic PRKN copy number variants in a relatively large group of Ecuadorian patients with EOPD. Additional, familial, early-onset and sporadic PD studies are warranted to further expand the knowledge base regarding Latin American populations.
    Keywords:  EOPD; Parkinson’s Disease; genetics; risk factors
    DOI:  https://doi.org/10.5603/pjnns.104123
  55. NPJ Parkinsons Dis. 2025 Feb 23. 11(1): 34
      LRRK2-related Parkinson's disease (LRRK2-PD) is the most frequent form of monogenic PD worldwide, with important therapeutic opportunities, exemplified by the advancement in LRRK2 kinase inhibition studies/trials. However, many LRRK2 variants, especially those found in underrepresented populations, remain classified as variants of uncertain significance (VUS). Leveraging on Malaysian, Singaporean, and mainland Chinese PD datasets (n = 4901), we describe 12 Chinese-ancestry patients harboring the LRRK2 p.Arg1067Gln variant, more than doubling the number of previously reported cases (total n = 23, 87% East Asian, mean age of onset: 53.9 years). We determine that this variant is enriched in East Asian PD patients compared to population controls (OR = 8.0, 95% CI: 3.0-20.9), and provide supportive data for its co-segregation with PD, albeit with incomplete penetrance. Utilizing established experimental workflows, this variant showed increased LRRK2 kinase activity, by ~2-fold compared to wildtype and higher than the p.Gly2019Ser variant. Taken together, p.Arg1067Gln should be reclassified from a VUS to pathogenic for causing LRRK2-PD.
    DOI:  https://doi.org/10.1038/s41531-025-00884-6
  56. Sci Transl Med. 2025 Feb 26. 17(787): eads0539
      Classic maple syrup urine disease (MSUD) results from biallelic mutations in genes that encode the branched-chain α-ketoacid dehydrogenase E1α (BCKDHA), E1β (BCKDHB), or dihydrolipoamide branched-chain transacylase (DBT) subunits, which interact to form the mitochondrial BCKDH complex that decarboxylates ketoacid derivatives of leucine, isoleucine, and valine. MSUD is an inborn error of metabolism characterized by recurrent life-threatening neurologic crises and progressive brain injury that can only be managed with an exacting prescription diet or allogeneic liver transplant. To develop a gene replacement therapy for MSUD, we designed a dual-function recombinant adeno-associated virus serotype 9 (rAAV9) vector to deliver codon-optimized BCKDHA and BCKDHB (rAAV9.hA-BiP-hB) to the liver, muscle, heart, and brain. rAAV9.hA-BiP-hB restored coexpression of BCKDHA and BCKDHB as well as BCKDH holoenzyme activity in BCKDHA-/- HEK293T cells and did not perturb physiologic branched-chain amino acid homeostasis in wild-type mice at a systemic dose of 2.7 × 1014 vector genomes per kilogram. In two models of severe MSUD (Bckdha-/- and Bckdhb-/- mice) and a newborn calf homozygous for BCKDHA c.248C>T, one postnatal injection prevented perinatal death, normalized growth, restored coordinated expression of BCKDHA and BCKDHB in the skeletal muscle, liver, heart, and brain, and stabilized MSUD biomarkers in the face of high protein ingestion. In summary, we developed a one-time BCKDHA-BCKDHB systemic dual-gene replacement strategy that holds promise as a therapeutic alternative to prescription diet and liver transplant for treatment of MSUD types 1A and 1B, the two most common forms of MSUD in humans.
    DOI:  https://doi.org/10.1126/scitranslmed.ads0539